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Executive Summary 

Throughout Fiscal Years (FY) 2016 and early 2017, Pacific Northwest National Laboratory (PNNL) and 

Oak Ridge National Laboratory investigated the effects of scaling on VOLTTRON™ and its components. 

The VOLTTRON team identified and made recommendations to performance issues that impacted the 

ability of early versions of VOLTTRON to scale effectively. Throughout FY16, and as an ongoing 

strategy, scaling and management-at-scale remain a primary design consideration for the platform.  

This document captures the experiments and practical lessons gathered through early FY17. We 

performed stress tests to identify potential bottlenecks in the system and learned numerous practical 

lessons through providing support to external organizations deploying the system, especially the 

commercial companies Intellimation and Transformative Wave Technologies. The real-world applications 

and interactions with the VOLTTRON community drove many development and testing priorities 

described in this report. 

Through this work, we made improvements to essential systems of the platform including: 

 Reducing duplicate driver publishes by at least half to decrease traffic on the message bus and 

improve speed and latency 

 Spreading out driver data collection to prevent overloading the underlying devices 

 Refactoring the ActuatorAgent to allow for controlling thousands of points at a time 

 Improving Historian performance by a factor of four by reducing extraneous metadata 

 Establishing alternative Historian deployment scenarios to meet the needs of commercial 

deployments 

 Greatly simplifying the registration process for managing VOLTTRON instances through the 

management user interface 

Additionally, we are creating infrastructure to allow for testing numerous large-scale VOLTTRON 

deployment topologies using the PNNL Research Cloud. This will allow tests to use the full platform and 

not merely provide simulated results. These investigations provided data on performance under load at 

various scales and recommendations in application program interface changes for automated installation. 

This report summarizes testing scenarios used, performance improvements implemented and their results, 

and our plans and recommendations for maintaining momentum in improving VOLTTRON scalability 

moving forward. We will continue to gather valuable lessons learned through practical deployments and 

formal testing that will be added to this document and lead to increased performance and usability of the 

platform. Although we have improved the scaling and identified approaches to make the current version 

of VOLTTRON scale in most deployments, scaling issues will always exist and we hope to work with the 

community to resolve these challenges. 
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2.1 

1.0 Introduction 

The VOLTTRON™ platform is built on five key features: flexibility, usability, security, scalability, and 

interoperability. While each feature is important, they are frequently in tension with each other; an 

increase in security can lead to a decrease in usability and scalability. Yet, they also complement and 

reinforce one another; flexibility can mean deploying VOLTTRON in ways that divide the load of a large 

building and therefore increase scalability. PNNL and ORNL sought to measure scalability in multiple 

dimensions. This report focuses on the different elements of VOLTTRON’s scalability, how it interacts 

with other priorities, and how it can be enhanced by leveraging them.  

This report is a living document that will be enhanced as more studies are performed and more practical 

lessons are learned as VOLTTRON fulfills increasingly varied use cases. Ideally the community will 

contribute their experience to this document and provide a wide range of perspectives on what 

VOLTTRON scalability means and how it can be achieved. This document also highlights where the 

platform could be improved to further support needs for large-scale deployments. 

The software improvements made in Fiscal Year (FY) 2016 to 2017 resulted in the following 

improvements: 

 Improved message bus performance by 4-10 times compared to the version 4.0 bus, bringing it closer 

to the base performance of the messaging library without sacrificing the VOLTTRON security 

improvements. 

 Typical settings reduced traffic to, at most, ¼ the traffic of the original behavior. A reduction to 1/20 

of the original volume is common. 

 Prevented overwhelming of BACnet devices (especially serial devices connected to router). Smooths 

out message load on message bus. 

 Allowed for commanding 4,000 simulated devices from a single VOLTTRON instance. 

 Improved Historian performance by factor of four. 

 On secure networks, Historians can be configured to write to a network accessible DB and increase 

throughput. 

 In cases of long-term issues recording data, the backup cache will not grow infinitely. 

 Increased cache performance by approximately 10 times and date time parsing by 30 times. 

 Dramatically reduced the time to set up a platform from tens of minutes to almost no time. 

Our results are summarized in Section 5.0. Section 7.0 includes our deployment recommendations for 

VOLTTRON systems in the field. 

2.0 Current State 

Developers at Pacific Northwest National Laboratory (PNNL) have deployed VOLTTRON numerous 

times, collecting data from buildings or researchers in their laboratories. Additionally, in FY16 larger 

scale practical deployments were performed at laboratories, universities, and commercial companies. Two 

exemplar deployments are described in this section to demonstrate how the platform was applied and 
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what lessons were learned. These deployments informed development and scalability in ways that are not 

possible in a simulated environment. 

In FY17, PNNL is performing additional testing at various scales using synthetic data in a private cloud 

environment.   

2.1 Clean Energy Transactive Campus – PNNL Deployment 

As part of the Clean Energy Transactive Campus (CETC) Project (Figure 1), PNNL performed a campus-

wide deployment of VOLTTRON. VOLTTRON instances installed on 10 PNNL buildings are now 

pushing data to a centralized instance for storage and forwarding to external collaborators. Given the 

number of network boundaries crossed, this deployment is currently the most complex known 

deployment. 

Within the CETC Project, VOLTTRON collection boards deployed on the isolated facilities network 

collect data from buildings and forward it to the main PNNL network via a firewall exception. A 

Historian on the central VOLTTRON instance sends data to Mongo databases on another network. A 

ForwardHistorian agent on this instance also forwards data to another VOLTTRON instance on a 

machine that is accessible from outside the PNNL network. This VOLTTRON then forwards the data 

once more to VOLTTRON instances running on external collaborators’ networks. In all, data collected 

from the PNNL buildings passes through four VOLTTRON instances before reaching its ultimate 

destination. The observed time for archiving data including passing through four Historians is less than a 

second. 
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Figure 1.  Clean Energy Transactive Campus Deployment on PNNL campus 

2.2 Intellimation 

Intellimation is an external company using VOLTTRON as part of their business to collect and analyze 

data for building owners. Their use case has provided a wealth of practical experience for deploying 

VOLTTRON in a real-life business use case. Intellimation has deployed VOLTTRON as part of their 

business model to collect data from customer buildings for analysis. The real-world experience gained by 

working with Intellimation proved invaluable to the VOLTTRON team. 

Intellimation’s deployment was very different from instances the VOLTTRON team had worked on 

previously. Intellimation is connecting to multiple geographically separated buildings and tying them 

together securely using an OpenVPN network. VOLTTRON is deployed on a small form-factor computer 

at the building site and communicates back to the server over a cellular network. 

For the largest building from which Intellimation is collecting, 9,000 data points are collected every 15 

minutes. Initial experiences with performance at this scale, using the default configuration, overwhelmed 

the building controller and the message bus on the collection box. To address this issue, the team enabled 

staggered driver startup. Drivers were set up to stagger the collection over a minute. Staggering the 

collection improved both the overloading of the building controller and the message bus.  
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Another performance issue encountered was the performance of the default MongoDB installation. The 

initial installation of the MongoDB at the start of the Intellimation installation was only configured to 

have data in tables with no indexes. As the size of the database grew, the database processing caused CPU 

usage to spike due to inefficient checks for uniqueness on data inserts. This would cause the entire system 

to become unresponsive and data to be lost. Applying an index relieved the problem and indexes are now 

part of the default database installation profiles. 

The use of OpenVPN in the network communication puts the Intellimation deployment in a different 

category than typical deployments. OpenVPN protects communication by encrypting traffic and allowing 

machines to have trusted communication in a normally untrusted network space. The overhead of this 

protection in addition to the VOLTTRON vip layer created additional latency in the network 

transmission. As shown in Figure 2, given that configuration, using the vip layer is not a critical 

requirement. This allows Historians on the collection boxes to use direct connections to the MongoDB, 

which increases performance by skipping steps that would be required for the ForwardHistorian. 

MongoDB performance can be further increased by creating multiple replicated instances of the database. 

PNNL is using this improvement in the CETC Project. 

 

Figure 2.  Deployment with Historians Writing Directly to a Remote Database 

3.0 Components of a VOLTTRON Deployment 

In this section, we describe the components of a VOLTTRON deployment that need to be considered for 

the scalability of the overall system. VOLTTRON is designed to scale with different computing 

hardware; therefore, hardware that runs VOLTTRON needs to be selected based on the functions it needs 

to perform. A different hardware requirement would be expected between the small board doing data 

collection versus the central server providing high-volume analytics. Different elements of the 

VOLTTRON software stack will be installed to support different topologies and use cases. 
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3.1 VOLTTRON™ Software  

The resources needed by the VOLTTRON platform depend on the deployment mode. Services can be 

included or excluded depending on what actions that instance is expected to take. For instance, if no 

control actions are needed or allowed for connected devices, the ActuatorAgent need not be deployed. If 

no local storage of data is needed, then no database Historian is needed. The major components of 

VOLTTRON software that affect scalability will be discussed in the following sections. 

3.1.1 Applications 

Applications running on VOLTTRON are called “agents.” Agents are where the real work happens in a 

VOLTTRON deployment; the rest of the platform supports these agents as they perform their tasks. The 

purpose and needs of agents affect the needs of the rest of the platform. Do the agents work from local 

data or do they need a global view of the entire deployment? Do they require significant memory and/or 

processing power to do analysis? These considerations determine whether agents can run on the small 

edge devices or require a high-end centralized server. 

3.1.2 Drivers 

VOLTTRON drivers are configured to communicate with devices in the deployment. In cases where the 

devices work with BACnet and MODBUS, the configuration files need to be set up for the specifics of 

that deployment. VOLTTRON provides a script for finding BACnet devices on a network and then 

collecting information on available data points from those devices. This could potentially cause a 

temporary high load on the facilities network as this is a broadcast request to which all devices will 

respond. 

In cases where VOLTTRON interacts with a building controller or devices with numerous points, it is 

more efficient to separate the collection into smaller collection subgroups. This scalability improvement 

can also prevent segmentation errors where the BACnet devices throw errors due to message sizes 

exceeding their limits. 

3.1.3 Message Bus/Router 

The underlying messaging technology of VOLTTRON is implemented on top of the ZeroMQ message 

bus with Publish/Subscribe (Pub/Sub) being the most central to the platform. VOLTTRON provides a 

security layer on top of Pub/Sub to authenticate and authorize publishers and subscribers. As is frequently 

the case, increasing security imposes a performance cost. Despite this added cost, the VOLTTRON team 

recommends (and sets the default to) the high-security mode of the message bus. Research into mitigating 

this cost was done for FY17 and is discussed in Section 5.0. 

3.1.4 Historian (BaseHistorian, ForwardHistorian, MySQL, MongoDB, etc.) 

Several types of Historian agents are available in the VOLTTRON system. The type of Historian being 

used depends on the need for data to reach specific networks and storage systems.  

The BaseHistorian is the foundation for all Historians in the VOLTTRON platform and provides a backup 

cache for preventing data loss. The BaseHistorian pulls data from the message bus and immediately 

writes it to the SQLite-based backup cache. It then reads from this cache and calls the specific 
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implementation (MySQL, Mongo, etc.). Since all data is first stored in this backup cache database, it can 

be a key bottleneck for data storage. 

For VOLTTRON instances collecting data for remote storage, the ForwardHistorian fulfills the need to 

send data to a remote location. However, the ForwardHistorian becomes a bottleneck when it cannot 

forward data to a remote instance at the rate data is being published on the local instance. The 

ForwardHistorian may become backlogged and never catch up. This behavior was observed on 

installations where numerous devices were being collected at a high rate. 

From this initial use case, the Forwarder has become the primary mechanism for securely transferring 

data from one instance to another for storage in a central repository. Alternate design options exist for 

when the data has no requirement to be presented as real-time collection.  

When the platform needs to store data in a database, either locally or over the network, then a database 

Historian is appropriate (SQLiteHistorian, MySQLHistorian, MongoHistorian). 

3.1.5 Database (MySQL, MongoDB) 

If the platform needs to store data, a database installation and the matching database Historian are 

required. VOLTTRON supports multiple databases. If the performance of the writes to the database slows 

down a Historian and data cannot be written at the rate of collection, the Historian could fall behind. An 

overworked database could also cause performance issues for the platform as a whole by consuming too 

many system resources. This was observed in early MongoDB installations. Especially in cases where a 

central database is storing all data for a deployment, dedicating a machine for the database is a more 

efficient solution. For large-scale deployments, the VOLTTRON team recommends a multi-node, 

replicated database installation. The front-end load can be distributed evenly using a load balancer. 

3.1.6 I/O 

Performance of the underlying system storage greatly effects the performance of the Historian since all 

data is first written to the backup cache. Especially in the small boards, the speed of the solid state storage 

greatly impacts the performance of the system. For instance, stress tests showed that eMMC allowed for 

twice as much throughput as slower speed SD UHS-3 storage, which itself performed twice as well as 

standard SD cards. 

3.1.7 Network 

Network speed can provide a bottleneck and potentially impact the performance of some components of 

the platform. For instance, the MongoHistorian failed when writing directly to a remote Mongo database 

due to operating over a cell modem network. The Historian was timing out but never reconnecting. By 

refactoring the connection code, this issue was overcome. 
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4.0 Testing Scenarios 

4.1 Existing Deployments 

Although none of the existing deployments were created to serve the needs of scalability testing, they 

provided valuable real-world feedback. The development team helped debug performance and scalability 

issues and the experience with real-world deployment led to implementation changes that are quickly 

deployed in the field. These improvements include:  

 Reducing duplicate driver publishes by at least half to decrease traffic on the message bus and 

improve speed and latency 

 Spreading out driver data collection to prevent overloading the underlying devices 

 Refactoring the ActuatorAgent to allow for controlling thousands of points at a time 

 Extending the ActuatorAgent to allow for parallel multi-point retrieval 

 Improving Historian performance by a factor of four by reducing extraneous metadata 

 Improving data marshalling for data going into the Historian caching 

 Establishing alternative Historian deployment scenarios to meet the needs of commercial 

deployments 

 Greatly simplifying registration process for managing VOLTTRON instances through the 

management user interface (UI) 

 Adding unique indices to the database schema to improve insertion time checks 

4.2 Focused Component Scale Testing 

The development team investigated specific components of software suspected of being scalability 

bottlenecks. As the message bus is a critical component to VOLTTRON, initial scale testing focused on 

message traffic load on the ZeroMQ message bus. Analyzing these results led to design and code changes 

to reduce duplicate message load in drivers and plans for a refactoring of message routing methods to be 

more efficient. Detailed message counts and timing results from the testing can be found at 

https://docs.google.com/spreadsheets/d/1iWc9K8Bgn_fqgmNNjw_F10xF867ucm9vpaFOVQcsnRg/edit#

gid=0 

The development team also investigated rewriting the message bus in Cython (a combination of C and 

Python) to improve performance. The initial development performed poorly when compared to the 

existing solution. The message bus (Pub/Sub over RPC) communication between agents via router results 

in numerous I/O calls. Since Cython does not help in speeding up I/O communication, the performance 

gained through Cython router was being overshadowed by the numerous I/O calls. The development then 

focused on reducing the number of I/O calls (i.e., essentially remove RPC from Pub/Sub and have a more 

direct send/receive communication between agents and router). This work is discussed in Section 6.0 

(message bus router). Some of this work has already been released into VOLTTRON version 4.0.  The 

remainder is expected to be completed in FY17 and is in testing for inclusion into the version 5.0 release. 

https://docs.google.com/spreadsheets/d/1iWc9K8Bgn_fqgmNNjw_F10xF867ucm9vpaFOVQcsnRg/edit#gid=0
https://docs.google.com/spreadsheets/d/1iWc9K8Bgn_fqgmNNjw_F10xF867ucm9vpaFOVQcsnRg/edit#gid=0
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4.3 Application Scalability in a Distributed Environment 

Oak Ridge National Laboratory (ORNL) has done extensive testing in the scalability of applications in a 

distributed VOLTTRON environment. The ORNL testbed features numerous VOLTTRON nodes 

communicating with each other to achieve a control objective. The demonstration application chosen is a 

distributed signal regulation algorithm. The scalability experiment featured two distinct components: 

 Distributed implementation of a control algorithm regulation that meets a regulation signal 

 A discrete event simulation framework for scalable software-based testing of the control algorithm 

The experiment has shown that application partitioning is possible in the VOLTTRON platform. Open 

questions still remain on how messaging latency and scalability of VOLTTRON central services may 

affect applications depending on this data.   

More detail on the application and experiment methodology can be found in Appendix B. 

4.4 Cloud Scaling Tests 

To enable larger scale and repeatable testing, VOLTTRON is configured in a private computational cloud 

environment. Initial testing was performed with 1 to N buildings reporting to a central node and storing 

the data using a MongoHistorian. To facilitate automated testing, the example FakeDriver was used. As 

this produces more than is likely to ever occur in the real world, this should introduce scaling issues 

quickly. Each collector is a virtual machine running the MasterDriver agent, with the FakeDevice 

example. They are each running 500 devices with 18 points each. Each collector also runs a 

ForwardingHistorian and communicates with a “central” instance. The MongoDb is installed on its own 

machine. 

In the simplest and most common topology of many collectors forwarding data through a single node to a 

MongoHistorian, each building introduces a 10-20 second lag in the time to store records into the 

database. The initial collection goes into the database in the regular 1-second window, as data points stack 

up, the time to store increases linearly across the number of points. For each synthetic building added to 

the topology, the total storage time increased. Initial analysis points to limitations on the throughput of a 

single MongoDB connection. This test data yields an upper bound for data points per sampling time 

window. This will inform deployments and be a baseline for possible improvements.  

Cloud technology is most effective when resources can be stood up and torn down in a scripted automatic 

factor. Prior to VOLTTRON version 4.0, key management issues prevented straightforward building of 

collector nodes with full security enabled. Upgrades in version 4.0 allow better key management through 

the use of automated tools such as Heat or Ansible. This management-at-scale is now something the 

VOLTTRON team considers routinely when evaluating changes and new features. 

Very preliminary data analytics were created to evaluate the health of data pipeline. Further detail on this 

can be found in Appendix B. 

5.0 Scalability Improvements 

VOLTTRON performance depends on the interaction of several components of the platform, the 

underlying hardware, and the operating system. This section addresses specific components in terms of 
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identified issues and resolutions that support scalability. The community is encouraged to capture their 

own findings as they utilize the platform for their specific deployments. We look forward to working with 

the community to continue addressing scalability in general and with specific use cases. 

5.1 Performance Improvements 

Table 1 provides a summary of the scalability improvements, including issues addressed, resolutions 

implemented, and resulting effects. 

Table 1.  Summary of Scalability Improvements 

Component Issue Resolution Effects 

Message Bus Pub/Sub over RPC 

implementation imposed a 

performance penalty to 

ensure security 

Refactor router and 

Pub/sub subsystem to be 

more efficient 

Message bus performance 

at least 4x faster for various 

use cases. Approaches raw 

ZMQ performance. 

Drivers Published same data point 

4 different ways 

Option to limit publishes Typical settings reduce 

traffic to, at most, ¼ the 

traffic of the original 

behavior. A reduction to 

1/20 of the original volume 

is common. 

Drivers All data collected at once Ability to stagger 

collection over a set period 

Prevents overwhelming 

BACnet device (especially 

serial devices connected to 

router). Smooths out 

message load on message 

bus. 

ActuatorAgent Single command for single 

point each call 

Takes a list of commands 

to issues at once 

Allows for commanding 

4,000 simulated devices 

from a single VOLTTRON 

instance. 

Historian Inefficient handling of 

metadata 

Remove unneeded 

metadata handling   

Improved performance by 

factor of 4. 

Historian ForwardHistorian only 

recommended mechanism 

for storing data remotely 

New DataMover Historian 

designed and additional 

deployment 

recommendations 

On secure networks, 

Historians can be 

configured to write to a 

network accessible 

database and increase 

throughput. 

Historian Backup cache grew 

unbounded and could run 

its system out of storage 

Configurable maximum 

cache size 

In cases where there is a 

long-term issue recording 

data, the backup cache will 

not grow infinitely. 

Historian Cache could be slow Change to JSON library 

and change date formats 

Cache performance 

increased approximately 10 

times and date time parsing 

increased by 30 times. 



 

5.10 

Platform 

Registration 

Error-prone and time-

consuming process to 

register a platform with a 

management instance 

VOLTTRON configuration 

utility needs minimal 

information then the act of 

registering is automatically 

handled by the platforms 

Dramatically reduced the 

time to set up a platform 

from tens of minutes to 

almost no time. 

The experiments and practical experience gained by the team led to a number of performance 

improvements that will be a part of VOLTTRON version 4.0 and highlighted areas to investigate for 

version 5.0. 

5.1.1 Message Bus 

The message bus is the essential component of the platform and its performance is paramount in ensuring 

an efficient and reliable platform. Numerous experiments and proof-of-concepts were performed to 

determine the best method of improving performance of the message bus without losing the gains in 

security accomplished in versions 3.0 and 4.0. These strategies included rewriting portions of the bus in 

C, separating out the component responsible for routing messages into its own process, and combining the 

router and Pub/Sub systems. 

Ultimately, the router and Pub/Sub integration proved to be the correct approach as others did not show 

enough improvement for their development cost, introduced unreliability, or sacrificed security. Another 

deciding factor was that this improvement could be accomplished with no impact to the user base. 

Developers would not need to modify their agents and existing deployments could interact with new 

VOLTTRON instances running the improved message bus. 

Table 2 provides a summary of performance testing showing the time from when data is published by a 

driver and received by a listening agent. Factors that impact time are the number of publishing devices, 

points per device, and the number of listeners. 

Table 2.  Summary of Performance Testing 

No. of 

devices 

Total mean time at Listener end 

 

No. of data 

points 

No. of 

listeners 

Original RPC based 

Pub/Sub 

With native ZMQ 

Pub/Sub (In sec) 

Router and 

Pub/Sub 

integrated 

50 0.13615 0.0119 0.05199 18 2 

100 0.3533 0.01234 0.0404 18 2 

500 1.467 0.0398 0.1972 18 2 

1000 2.258 0.08439 0.2634 18 2 

1500 3.6162 0.13425 0.2301 18 2 

      
50 0.5088 0.0751 0.196 18 10 

100 0.97167 0.16813 0.285 18 10 

500 3.9861 0.651 1.1968 18 10 

1000 10.2173 1.2188 2.4375 18 10 
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No. of 

devices 

Total mean time at Listener end 

 

No. of data 

points 

No. of 

listeners 

Original RPC based 

Pub/Sub 

With native ZMQ 

Pub/Sub (In sec) 

Router and 

Pub/Sub 

integrated 

1500 16.2269 2.704 3.3629 18 10 

2000 19.24 4.7028 5.436 
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5.1.2 Driver 

VOLTTRON drivers are the major contributor to traffic on the message bus. Any improvements or 

refinement of their publishing behavior noticeably impacts the performance of the platform overall. 

VOLTTRON drivers, by default, publish the same data four different ways: depth first single point, 

breadth first single point, depth first all points for a device, and breadth first all points for a device. This 

provides maximum flexibility for potential subscribers by allowing them to subscribe to single points or 

all points for a device and by the full path or start with points of a certain type. In actual use, most agents 

subscribe to the depth first all and pull out the points they need. With this behavior in mind, the types of 

publishes for drivers is now configurable. Narrowing publishes down to the single depth first all for a 

device reduces the amount of traffic by half at least and much more in instances of devices with a high 

number of points (which would no longer be published singly). This allows for the publishing of more 

individual devices and reduces unneeded messages being published. 

Another improvement made to the VOLTTRON drivers to address scalability is the ability to stagger data 

collection. Instead of collecting from hundreds of points at one time, the collection can be spread across a 

configured time period. This prevents flooding both the VOLTTRON message bus and the underlying 

interaction with building controllers or devices. During a deployment where 9,000 points were being 

collected at once, both these errors appeared. Collection was enabled by spreading the collection of the 

points over a minute.  

5.1.3 Actuator 

The ActuatorAgent serves as a gatekeeper for access to devices being controlled by VOLTTRON. It 

maintains a schedule of device control to ensure that multiple agents cannot send control commands to the 

same device at the same time.  

Scalability issues with the Actuator were identified while supporting an experiment involving agents 

sending control commands to thousands of simulated devices at the same time. The Actuator issued 

commands singly in serial that was sufficient for previous use cases where control commands were issued 

infrequently. The Actuator was refactored to allow multiple commands to be sent at a time and now 

supports sending more than 4,000 commands at a time. In the future, the MasterDriver and Actuator could 

be combined to further enhance scalability in this area. 

5.1.4 Historian 

The Historian subscribes to a set of base topics and records this data to a storage solution as configured. 

This storage solution could be a file, database, or forwarding to another VOLTTRON instance. In cases 

where the Historian fails to record to the ultimate destination, data is stored in a backup cache until the 

recording resumes.  
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During high-volume testing of the platform, two concerns became apparent with the Historian: 1) 

inefficient handling of metadata was slowing recording of data to unacceptable levels and 2) the backup 

cache could be a concern on small boards that experience long-term connection issues. 

Removing the unnecessary metadata improved performance by a factor of four and allowed the lower-end 

boards to keep up with the volume of data in the testing. The other issue has handled by the addition of a 

configurable maximum size of the cache. Administrators can set this maximum to ensure their boards do 

not run out of storage space. 

The backup cache was also transitioned to a different JSON processing library. This provided significant 

speed improvements. Retaining the floating point precision in the messages yielded an approximate 10 

times increase. As the date time parsing was consuming significant time, switching  to a more well-

defined format in the database and replacing the parsing function yielded a parsing speed increase of 

about 30 times.   

5.1.5 Profiling 

Agents that provide services to the platform (Historians, drivers, platform agent, etc.) are undergoing 

profiling tests to identify inefficiencies.  

In a large-scale installation, the VOLTTRON Central (VC) Platform Agent (VCP) was taking the 

majority of CPU resources. Profiling revealed inefficiencies in the way the VCP handled status reports for 

the agents that were operating on its platform. Improvements are being made to handle these reports more 

efficiently. 

5.1.6 Registering Platforms 

While not a traditional “scalability” issue, the manual process for registering platforms with the VC 

Management UI would have hindered a large-scale deployment of VOLTTRON platforms. This is an 

example of where high security leads to decreased usability as the administrator was required to manually 

complete several steps to properly configure security on VC and the remote platform and complete an 

error-prone action in the VC UI.  

This was addressed by enabling the auto-registration of platforms with a controlling VC Management 

instance. The remote instance can be pre-configured to look to a specific VC instance for management. 

The necessary security setup is handled by a VOLTTRON configuration command that greatly simplifies 

the process and removes the need for administrators to hand edit security settings and constructing a long 

URL containing security keys. This decreases the time for the whole process from tens of minutes to a 

single minute to use the configuration command or no time for a pre-provisioned instance. 

 

6.0 Upcoming Changes 

Although some scalability bottlenecks were fixed in the normal development schedule, some are more 

complex and require greater evaluation before they can be released. They must maintain existing 

functionality and security while improving their performance issue. 
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6.1 Message Bus Router 

The VOLTTRON development team is exploring multiple ways to speed up the message bus without 

sacrificing security. The message bus router is the primary candidate for performance improvement and 

the team is looking at the effects of rewriting this component, separating it out as another process, and 

replacing it with another option.  

Two targets under current development include: 

 RPC calls directly between VOLTTRON platforms  

– In the current VOLTTRON setup, if an agent on one platform wants to make a RPC method call 

to an agent on remote platform, it has to make an explicit connection to the target platform to 

make the RPC call. Instead, this change will allow the VIP routers of each platform to make the 

connection and manage the RPC communication internally. This will reduce the burden on the 

agents and enable a more seamless RPC communication between agents on different platforms. 

 Pub/Sub between remote platforms without using a ForwardHistorian. 

– The goal of this task is to improve the current setup of having a forward Historian to forward 

local Pub/Sub messages to remote platforms. Instead, routers in each platform will be responsible 

for maintaining inter-platform connections, inter-platform message subscriptions, and routing of 

messages across platforms. 

These improvements will reduce the burden of routing messages between remote platforms. It will also 

reduce the complexity to the deployer.  Work is still ongoing to address scaling considerations such as 

platform discovery, key distribution, and maintaining topic subscriptions. 

The results of these investigations are informing performance enhancement work in FY17.  

6.2 DataMover 

The ForwardHistorian was originally created to forward data from one VOLTTRON platform to another 

and have the data appear as quickly as possible. Over time it has been installed in most deployments to 

move data from one machine to another. In many cases, no use case exists for the data to appear on the 

destination as if it was locally collected. Using this agent causes each message to be processed multiple 

times through the Historian/message bus processing. This is significant overhead when live data is not 

required. 

The agent that will address this issue is the upcoming DataMover. The DataMover agent will process data 

from the collection platform directly to the remote Historian, skipping the local message bus and local 

Historian processing. Instead of forwarding individual messages immediately, data can be collected into 

batches for more efficient transmission. These batches can then be sent to a corresponding agent on the 

receiving platform, which immediately writes to the database instead of republishing on the message bus. 

This approach has several benefits including instant feedback on the success or failure of the attempted 

write. This increases data assurance over the Forwarder, which cannot verify that the ultimate write to the 

database succeeded. In cases where data still needs to appear live on the receiving platform, the batch can 

be broken up and republished, although there will be some delay over live publishes from a 

ForwardHistorian. 
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7.0 Conclusion and Deployment Recommendations 

VOLTTRON scalability investigations will continue throughout the lifetime of the project. In FY16 many 

practical lessons were learned and applied to the platform. In FY17 these will be enhanced with more 

formal testing of tens, hundreds, and thousands of platforms working together to implement a distributed 

energy efficiency application. Also strategies to address the manageability of such a large deployment 

will be explored in order to make recommendations for platform improvements. In addition to scalability 

of the core VOLTTRON, we look forward to additional explorations by the community of new storage, 

analytic and dashboard technology. 

Table 3 is an overview of the interplay before hardware, platform roles, services, and applications. This 

table will be updated as changes to the platform and further investigation provide new information.  

Table 3.  Interplay of Hardware, Platform Roles, Services, and Applications 

Example 

Hardware 

Supported Platform 

Roles 
VOLTTRON Services 

Data 

Collection 

Example 

Applications 

Raspberry Pi, 

BeagleBone 

Black, 

ODROID, etc. 

Edge Data Collection 

and small applications 

ActuatorAgent, Drivers, 

ForwardHistorian, SQLite 

Historian, WeatherAgent, 

VCP  

~1000 

points/minute 

Fault 

Detection, 

Whole 

Building 

Energy 

Intel NUC, 

mini PCs1 

Data Collection and 

application support 

Local Data Store 

ActuatorAgent, Drivers, 

ForwardHistorian, SQLite 

Historian, MySQL 

Historian, WeatherAgent, 

VCP 

~2000 

points/minute 

(dependent on 

device 

communications 

capabilities) 

Intelligent 

Load Control 

High-

capability 

virtual 

machine, 

high-end 

desktop 

Management UI 

Centralized Data Store 

VC Management UI, 

MongoDB Historian, VCP, 

Weather, Connection to 

external signals 

Not applicable 

for this role 

Optimizers, 

Analysis, 

Modeling 

 

                                                      
1 http://www.tomshardware.com/reviews/mini-pc-round-up,3697.html 
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A.1 Distributed signal regulation agent  

Buildings are currently large passive participants in the electric grid. They comprise a large thermal 

storage that can be used as an ancillary service to enhance the reliability of the power grid, which will be 

subject to more volatility and unpredictability from the integration of renewable energy resources. Two 

control strategies were explored that allow HVAC loads in commercial and residential buildings to 

provide frequency regulation services to the grid while maintaining occupants’ comfort. The first control 

strategy is based on model predictive control acting on a variable air volume HVAC system that is 

available in large commercial buildings. The second strategy is a rule-based control that acts on numerous 

HVAC units, switching them on or off. These units are typically available in residential buildings and in 

many small to medium size commercial buildings. 

The simulation experiments were implemented in Matlab and considered a set of 50 buildings that 

illustrated the proposed control coordination and control of HVAC systems for commercial and 

residential buildings. In this setup, a master control sent on/off signals to control HVAC units to meet a 

signal regulation objective. Ordinary differential equations were used to model the HVAC units and the 

master control would determine the number of units that must be switched on or off. The individual units 

were selected in a manner to minimize occupant discomfort.  

The developed algorithm was ported to VOLTTRON and implanted with additional features to enable 

true multi-node control coordination. The implementation consisted of a MasterNode Agent and multiple 

ModelNode Agent instances. Upon booting up, a ModelNode instance would communicate with the 

MasterNode periodically updating the master of its temperature and HVAC state. The MasterNode 

maintains a list of active ModelNodes (a list of buildings being controlled). The first time a ModelNode 

communicates with the MasterNode is considered a new ‘registration’ and the ModelNode is added to the 

list of ModelNodes to be controlled. The MasterNode senses the regulation need every 10 minutes (to 

avoid short cycling equipment) and sends control signals to the ModelNodes. 

The developed algorithm was tested on multiple instances of VOLTTRON running on Oracle VirtualBox 

as well as more extensively using the ADEVS (A Discrete Event Simulation Framework), as described 

later in this section. 

While this demonstrated the scalability of typical algorithms in VOLTTRON, true scalability is 

demonstrated through an implementation of a distributed version of the signal regulation algorithm. The 

approach taken relies on accomplishing the three fundamental principles of distributed algorithms: 

1. Distributed election of a leader 

2. Arriving at a consensus 

3. Achieving robustness 

In a typical real-world control implementation, there is a high likelihood of some form of master node in a 

building. Grid-level needs should be met robustly across an integrated set of buildings, microgrids, and 

possibly across campuses. It is important to design distributed transactive algorithms that allow for 

flexibility within a customer’s premises as well as integrate seamlessly across multiple customers. Figure 

A.1 illustrates the scenario. A campus may include multiple buildings, each controlled by a VOLTTRON 



 

 

node. The campus itself elects a main node that communicates with other peer instances in other 

campuses and participates in distributed decision making. 

 

Figure A.1.  VOLTTRON Campus Scenario. 

As a result, the distributed agent is being developed to accomplish the following: 

Within a campus: 

i. Establish a virtual network (could use the existing wired or wireless network). In a simple 

implementation, a wireless ad-hoc network would suffice. 

ii. Individual VOLTTRON nodes, upon boot up, will register in the network. 

iii. Nodes determine (elect) a leader. Straight forward implementation uses the node with the 

smallest IP. 

iv. Determine rules/circumstances that result in “leader is down; elect new leader.” 

v. Each node communicates its regulation capacity/flexibility. 

vi. Nodes communicate periodically with the leader. 

vii. Leader runs optimization algorithms and communicates back decisions. 

viii. Optionally, other nodes may have local logic and may send an acknowledgment of 

decision or an error code if it cannot comply. 

Across campuses: 

i. The leader nodes across campuses communicate. 

ii. Each campus communicates load flexibility capacity. 

iii. Regulation signal need is met in the ratios that each campus is able to contribute. 

A.2 Testbed for scalability testing  

Relatively slow evolution of “smart” energy and building technologies is due in part to the considerable 

gap between building affordable, highly reliable software, and the continuing reliance of the energy and 

buildings industry on prototype-based engineering. Indeed, all industries that now use software to perform 

major tasks abandoned prototype-based engineering in favor of model-based engineering. Model-based 

engineering is practiced because it is impossible to adequately test complex software by examining its 

operation in a physical prototype of the system being monitored and controlled. Adequate test coverage 



 

 

can require millions of test cases. As in the case of the distributed signal regulation agent, realistic testing 

poses a major challenge. 

Model-based engineering addresses these problems by allowing for relatively inexpensive “virtual” 

prototypes that operate in simulation. Our simulation technology supports two parts to address this need: 

 The continuous dynamics of the physical systems being monitored and controlled 

 The discrete event dynamics of the computing and communications elements responsible for the 

monitoring and control.  

Physical system models developed in MODELICA are transformed into Functional Mock-up Units 

(FMU) and these units are encapsulated in ADEVS. The QEMU computer system emulators are 

leveraged as components in ADEVS by wrapping QEMU system images running VOLTTRON, which 

incorporate the control system as it is expected to be deployed in the field. Modifications to QEMU 

enable event scheduling of the emulators’ execution in an order dictated by their current position in 

virtual time (simulation time). ADEVS handles events and communications between QEMU and FMU 

instances and evolves FMU systems over time by user-defined numerical solvers.  

A key technical achievement in creating the simulation testbed was creating a very small footprint system 

image running VOLTTRON. Significant effort went into its creation, including dynamic repartitioning of 

a tinycore Linux installation, compiling required compilers in tinycore to create Python modules, and 

modifying the system’s library loading routines. These efforts resulted in a system image that less than 

200MB and can run in as little as 256 MB RAM, while enabling full networking, serial ports, and 

additional peripherals for true controls emulation. 

Our demonstration is illustrated in Figure A.2 orchestrating multiple buildings to meet signal regulation 

needs using VOLTTRON. Figure A.3 shows how the temperature in each building is controlled by 

aforementioned VOLTTRON agents. Five computers (incorporating the master node and four model 

nodes) and four building models are simulated allocating 500 MB memory for each building. The real 

running time of a 12-hour simulated test was approximately 60 minutes. This demonstration shows how a 

testbed for more complex multi-building (community level) and multi-layer control algorithms can be 

realized with the new simulation technology. 



 

 

 

 

Figure A.2.  Couplings  of  the  components. Each  model  node  represents  a  building  and  the  master  

node monitors states of all model nodes and evaluates decisions. NIC is network card. 

 



 

 

 

Figure A.3.  Room temperatures of different buildings evolve around the set point temperature over time 

based on regulation signal. 
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Cloud Scaling Testing 

The goal of using a cloud environment to perform scale testing for VOLTTRON include the ability to: 

 Establish multiple networks and create different installation topologies 

 Create and destroy installations in an automated and reproducible manner 

 Provide re-creatable installations to test installation and configuration using technology such as 

Docker and Ansible 

 Test new releases or client topologies 

Testing priorities focused on key areas and elements not covered by practical deployments or developer 

focused testing. The most common topology, using data collectors and ForwardHistorian agents with 

MongoDB, was tested in the cloud using automated creation techniques. 

The cloud infrastructure used for this experiment is the PNNL Institutional Research Cloud running 

OpenStack (version Mitaka). It is backed by a 40G network and shared cloud-attached storage. 

Initial experiments yielded the following insights: 

 Unnecessary agents installed on a VOLTTRON node can impact performance. 

– We had a platform agent on a machine that did not need it. The agent was constantly performing 

work it had no need to do. Once the agent was removed, the CPU and memory load on the 

machine flattened out. 

 In using automated tools to deploy our machines, we did get the benefit of the interactive 

VOLTTRON configuration tool. This led to our collector machines publishing significantly more data 

than was necessary. This, in turn, led to the Historian being unable to process all the data without 

falling behind. We saw this performance with one building with 500 fake devices and it was 

magnified significantly as each building was added. Turning off the extra data publishes reduced the 

load and the Historian was able to keep up. 

 Key management must be considered in an automated deployment. It is not difficult to pass server 

keys down to new machines, but providing server keys from one collector to another, especially if 

they are being created in the same script, can be challenging. Improvements were made in version 4.0 

to allow look ups of some keys, but this must be considered in a large automated deployment.  

 Running the VC agent on the central processing machine has a non-zero but manageable footprint. 

Experimental results put each 500-device building at about a 200-300 MB footprint.   

 Poor naming choices of devices and buildings will not affect VOLTTRON’s ability to function, but 

does impact the ease of analytics. 

 Lack of closely synchronized time settings can make performing health analytics significantly more 

challenging. In a large-scale deployment, it is not practical to log into each box to update its time and 

tools like Ansible should be considered. Analytics producers must also be sensitive to this 

phenomena.   

Measurements of the processing pipeline included tracking the average load average and memory use of 

the central node and time to storage metrics as each building was added. Due to the slight time setting 



 

 

configurations, anything within 1-3 seconds from “collection” to storage in the database was considered 

to be not impacted by new scale. 

As each building was added to the topology, the time between generate and database storage was tracked.  

Each synthetic building running the FakeDriver added an average of an extra 10 seconds of maximum 

time to store. Each batch of records began taking 1 second to store and progressed in a linear fashion to 

taking 9 seconds initially to almost a minute with four buildings.  

Initial analysis suggests this is related to the throughput performance of the single Python MongoDB 

connection. This yields a recommended upper boundary for number of points stored per time unit for any 

single concrete MongoHistorian. Estimated storage times are listed in Table B.1. 

Table B.1.  Storage Times 

Number of 

Buildings 

Devices Points Starting Storage 

Time (sec) 

Ending Storage 

Time (sec) 

1 500 18 1 9 

2 500 18 1 25 

3 500 18 1 45 

4 500 18 1 60 

 





 

 

 


