

PNNL-30858

Message Bus Usage
Recommendations

December 2020

Shwetha Niddodi

Benjamin LaRoque

Craig H Allwardt

Chandrika Sivaramakrishnan

Jereme N Haack

Prepared for the U.S. Department of Energy
under Contract DE-AC05-76RL01830

DISCLAIMER

This report was prepared as an account of work sponsored by an agency of the

United States Government. Neither the United States Government nor any agency

thereof, nor Battelle Memorial Institute, nor any of their employees, makes any

warranty, express or implied, or assumes any legal liability or responsibility

for the accuracy, completeness, or usefulness of any information, apparatus,

product, or process disclosed, or represents that its use would not infringe

privately owned rights. Reference herein to any specific commercial product,

process, or service by trade name, trademark, manufacturer, or otherwise does not

necessarily constitute or imply its endorsement, recommendation, or favoring by

the United States Government or any agency thereof, or Battelle Memorial

Institute. The views and opinions of authors expressed herein do not necessarily

state or reflect those of the United States Government or any agency thereof.

PACIFIC NORTHWEST NATIONAL LABORATORY

operated by

BATTELLE

for the

UNITED STATES DEPARTMENT OF ENERGY

under Contract DE-AC05-76RL01830

Printed in the United States of America

Available to DOE and DOE contractors from the

Office of Scientific and Technical Information,

P.O. Box 62, Oak Ridge, TN 37831-0062;

ph: (865) 576-8401

fax: (865) 576-5728

email: reports@adonis.osti.gov

Available to the public from the National Technical Information Service

5301 Shawnee Rd., Alexandria, VA 22312

ph: (800) 553-NTIS (6847)

email: orders@ntis.gov <https://www.ntis.gov/about>

Online ordering: http://www.ntis.gov

mailto:reports@adonis.osti.gov
https://www.ntis.gov/about
http://www.ntis.gov/

1

Acronyms and Abbreviations

CA Certificate Authority

ECC Elliptical Cryptographic Curve

GE General Electric

HVAC heating, ventilation, and air-conditioning

ML Machine Learning

MQTT Message Queuing Telemetry Transport

PNNL Pacific Northwest National Laboratory

RMQ RabbitMQ

RPC Remote Procedure Call

VIP VOLTTRON Interconnect Protocol

ZAP ZeroMQ Authentication Protocol

ZMQ ZeroMQ

JSON JavaScript Object Notation

2

Contents

 Introduction ... 4

 Deployment Recommendations Summary ... 5

 ZeroMQ-based VOLTTRON .. 6

 VOLTTRON Interconnect Protocol ... 6

 Authentication .. 7

 Authorization .. 8

 RabbitMQ-based VOLTTRON ... 8

 VIP in RabbitMQ VOLTTRON .. 8

 Authentication .. 9

 Authorization .. 9

 Differences between ZMQ-based VOLTTRON and RMQ-based VOLTTRON 10

 Performance Benchmarking .. 10

 Scaling the Number of Devices .. 11

 Python Version Comparison .. 11

 Scaling the Number of Agents.. 12

 Large Number of Points per Device ... 12

 Qualitative Historian Backlog Test ... 13

 Deployment Use Cases ... 13

 Simple Installations .. 14

 Installation with a Very Large Message Payload .. 15

 Deployment Options .. 15

 Integration with Third-Party Tools .. 17

 Message Queuing Telemetry Transport ... 17

 RabbitMQ .. 18

 Elasticsearch ... 18

 Conclusion .. 19

3

Figures

Figure 1. SSL-based authentication. ... 9

Figure 2. Typical VOLTTRON deployment. ... 14

Figure 3. Flexible deployment. .. 17

Figure 4. INGRESS application. .. 18

Tables

Table 1 Differences between ZMQ-based and RMQ-based VOLTTRON 10

Table 2 Scaling number of devices ... 11

Table 3 Python Version Comparison ... 12

Table 4 Scaling number of agents ... 12

4

 Introduction

The VOLTTRON platform developed by Pacific Northwest National Laboratory (PNNL) and
funded by the U.S. Department of Energy’s Building Technologies Office incorporates two
different message bus technologies, each with its own strengths and use cases. The message
bus is a key platform component responsible for moving data from one endpoint to another. It is
also essential for meeting the security and interoperability goals of the platform with implications
on ease of deployment, scalability, and integration. This document describes ZeroMQ (ZMQ)
and RabbitMQ (RMQ) as used in VOLTTRON and discusses the most appropriate message
bus choice for a specific VOLTTRON deployment use case.

VOLTTRON was initially developed with ZMQ as the message bus. ZMQ’s messaging library is
lightweight and extensible allowing for development of scalable distributed applications.
However, many custom-built features had to be added on top of the core ZMQ library to meet
platform requirements. As VOLTTRON became more mature and the number of use cases
increased, the VOLTTRON team continuously attempted to maintain and extend features to
these custom-built features to keep up with community needs. Based on community feedback
and to reduce maintenance cost, it was decided to refactor VOLTTRON’s message bus layer, to
use a more industry-accepted messaging library that provides many of the needed features.
RMQ is one such messaging library that has seen major investments by commercial
companies. Rabbit Technologies, now part of Pivotal Technologies (VMWARE spin-off) saw a
$105 million investment by General Electric in 2013. It is used by Instagram, Indeed.com,
Google Cloud Platform, Tesla, etc. Huge industry backing and the ability to benefit from
community-driven message bus improvements, led PNNL to include RMQ as the next message
bus for VOLTTRON. The goals of this message bus extension are as follows:

• Maintain essential features of current message bus and minimize transition cost.

• Leverage an existing and growing community dedicated to the further development of RMQ.

• Move services provided currently by VOLTTRON agents to services natively provided by
RMQ.

• Decrease VOLTTRON development time spent on supporting the message bus, which is
now a commodity technology.

• Address community concerns about ZMQ.

To allow community members to select the best option for their needs, this document provides
recommendations about which message bus is better suited for various use cases and
deployment scenarios. A summary of recommendations can be found in section 2.0. Sections
3.0 and 4.0 provide a short description of ZMQ-based VOLTTRON and RMQ-based
VOLTTRON, and Section 5.0 describes the differences between the two. Section 0 describes
performance benchmarking performed on the two message bus technologies on Raspberry Pi
and the results collected from various test scenarios. Section 7.0 describes various deployment
use cases and when to use each message bus. Section 8.0 describes how RMQ-based
VOLTTRON can be used to integrate with various third-party tools to make heterogeneous
systems work cohesively.

5

 Deployment Recommendations Summary

This section provides a short summary of the analysis and consideration of common use cases
with recommendations for when to use each message bus. More in-depth analysis and
discussion follows in the rest of the document.

ZMQ-based VOLTTRON is easy to install because it involves very few installation steps. Non-
software engineers can quickly bootstrap the environment with minimal steps and start running
the platform. It is lightweight, has well-defined security features, and a low memory footprint.
These features make it easy to deploy in low-cost devices that have memory constraints, such
as raspberry Pis. ZMQ-based VOLTTRON performs well on small boards as in Section 0 for the
performance benchmarking comparison conducted on a Raspberry Pi 4 model B. ZMQ-based
VOLTTRON is perfect for single platform deployment or multi-platform deployments with fewer
VOLTTRON instances (<20) connecting to a central instance or to each other. ZMQ-based
VOLTTRON can hold ~100 agents per VOLTTRON instance without any degradation in the
message bus performance. ZMQ-based VOLTTRON can handle a low to medium volume of
traffic, as shown in the benchmark results in Sections 6.2 and 0. In ZMQ-based VOLTTRON, we
have custom-built a ForwardHistorian agent to forward messages from one platform to another.
ForwardHistorian also provides backup cache support, which is useful when connection to the
remote platform is lost. ZMQ-based VOLTTRON has a custom-built multi-platform feature where
the connections between multiple platforms are maintained by the internal router module, and
the agents themselves do not have to manage the connection. They can publish/subscribe to
messages and make Remote Procedure Calls (RPCs) to agents in other platforms seamlessly.
However, this does not scale as well as an RMQ-based VOLTTRON instance because it needs
O(n2) connections between n instances. The platforms cannot be daisy chained together and
have messages be sent over multiple hops to a destination platform or have multiple groups of
VOLTTRON instances connect to each other. For ZMQ-based VOLTTRON to provide this kind
of flexible deployment options, these features need to be custom-built, which will involve lot of
time and effort from the VOLTTRON team.

Installation of RMQ-based VOLTTRON is more involved because it has more steps related to
configuring the RMQ broker and setting up SSL certificates for the VOLTTRON platform and its
agents. This added complexity is perhaps a higher barrier to enter for some non-software
engineers and would make them hesitant to adopt RMQ-based VOLTTRON for their
deployment use case. The VOLTTRON team continuously works on streamlining the installation
and troubleshooting steps based on user feedback. RMQ is useful for large-scale deployments
involving numerous VOLTTRON instances either connected to each other or to a central
instance. It has several easy-to-use plugins that are integrated into RMQ-based VOLTTRON. It
also provides more flexibility in deployment. The shovel plugin can be used to forward
messages from one platform to another. But the drawback is that, it has limited caching
capability so when the connection to the remote broker is lost for an extensive period, data will
be lost. RMQ provides a standard in-built federation plugin to connect multiple platforms
together. This plugin can be used to connect multiple VOLTTRON instances and have them
work together as a group with loose coupling. The agents themselves do not have to manage
the connection; they can publish/subscribe to messages and make RPCs to agents in other
platforms seamlessly. The platforms can be daisy chained together or have multiple groups of
VOLTTRON instances connect to each other using the federation plugin. Unlike the ZMQ-based
VOLTTRON instance, the federation plugin does not need O(n2) connection between n
instances, so it scales better. In terms of message bus performance, RMQ-based VOLTTRON
performs better as the number of messages being published on the message bus increases to

6

very high extent and message payload size becomes very high. So, it is well suited for
deployment use cases that need to withstand very large amounts of data traffic. RMQ provides
a web interface to manage and monitor RMQ resources. This interface enables creation,
deletion, and authorization management of users, queues, and more. It also allows the platform
user to monitor performance metrics such as queue length, message rates, connection
information, etc. This is a useful feature for understanding the status of a deployed instance and
performing some quick troubleshooting. ZMQ-based VOLTTRON has custom-built features to
control the status of the agents and add/delete/control access of some of VOLTTRON’s
resources. However, it does not have built-in capability to monitor the status and gather
message bus performance metrics.

Integration with third-party tools, such as Message Queuing Telemetry Transport (MQTT) and
Elasticsearch, is easier with RMQ-based VOLTTRON. Because RMQ is a well-known
messaging library and widely accepted in industry, several easy-to-use plugins have been
developed either within RMQ or in the external tools to establish connection with each other. A
git repository (https://github.com/VOLTTRON/external-clients-for-rabbitmq) maintained by the
VOLTTRON team shows examples of how to connect to some of them. In ZMQ-based
VOLTTRON, custom agents must be created to connect to these disparate tools and send
messages to each other. These agents also must be regularly updated to keep up with changes
in newer versions of the external tool. Having the choice of various community-developed
plugins instead of custom agents, makes it easier for VOLTTRON to cater to the emerging
needs of the community.

 ZeroMQ-based VOLTTRON

This section provides brief description of features of ZMQ-based VOLTTRON. ZMQ-based
VOLTTRON uses ZMQ (https://zeromq.org/get-started/) as the underlying message library. The
VOLTTRON platform process acts as the server and is responsible for accepting incoming client
connections and routing the messages between agents. The VOLTTRON agents are client
applications and connect to the VOLTTRON platform to be part of the VOLTTRON ecosystem.
The agents send messages to each other using the VOLTTRON Interconnect Protocol (VIP).

 VOLTTRON Interconnect Protocol

VIP is a routing protocol invented by PNNL that allows agents to send messages to each other
in a known, common message format, while maintaining interoperability and security goals. VIP
uses the ZMQ’s router pattern. Specifically, the router runs within the VOLTTRON platform and
binds to a ROUTER socket and acts as the server, and peers/agents connect using a DEALER
or ROUTER socket. The router is responsible for routing messages between peers/agents.
Each agent must be associated with unique identity string so that the router knows where to
route the message to. Each message follows the format below.

RECEIVER SENDER PROTOCOL USER_ID MSG_ID SUBSYSTEM ARG1 ARG2

ARGN

• Sender: identity of the sending (source) peer.

• Receiver: identity of the recipient (destination) peer.

• Protocol: set to “VIP1”.

https://github.com/VOLTTRON/external-clients-for-rabbitmq
https://zeromq.org/get-started/

7

• User_ID: VIP authentication metadata set in the authenticator.

• Msg_ID: message identifier set by the sending peer. Replies SHALL echo the request id
without modifying it.

• Subsystem: this specifies the peer subsystem for which the data are intended.

• Arguments: provides the arguments for the given subsystem. The number of frames
required is defined by each subsystem.

When an agent, Agent1, wants to make an RPC “set_point” to Agent2, it packages the message
in the format below and sends it over the message bus. The router looks at the first frame and
forwards the message to the intended recipient. The recipient, Agent2, then performs the
appropriate actions based on the subsystem frame, which is “RPC” in this example, and sends
the response back by exchanging the first and second frames. The router again looks at the first
frame and routes it to caller of RPC method which is Agent1.

Agent2 Agent1 VIP1 abcd 001 RPC set_point Agent2 PointA 0.9

Agent1 Agent2 VIP1 abcd 001 RPC set_point True

More information about the VIP protocol can be found at
https://volttron.readthedocs.io/en/develop/platform-features/message-bus/vip/vip-overview.html

 Authentication

VIP uses ZMQ’s ZeroMQ Authentication Protocol (ZAP) and Elliptical Cryptographic Curve
(ECC) key mechanism to provide authentication. Only agents authenticated by the platform can
connect and use the encrypted channel for communication. VIP authentication is implemented
in the auth module and extends the ZAP to VIP by including the ZAP User-ID in the VIP
payload, thereby allowing the platform to authorize access based on ZAP credentials.
VOLTTRON automatically generates an encryption key and enables CurveMQ by default on all
Transmission Control Protocol connections.

ZAP defines a method for verifying credentials exchanged when a connection is initially
established. The authentication mechanism provides three main pieces of information useful for
authentication:

• domain: a name assigned to a locally bound address (to which peers connect)

• address: the remote address of the peer

• credentials: includes the authentication method and any associated credentials.

During authentication, VOLTTRON checks these pieces against a list of accepted peers defined
in a file, referred to as the “auth file” in this document. This JSON-formatted file is located at
$VOLTTRON_HOME/auth.json and contains an “allow” list defining the list of allowed
credentials. Authentication goes through when credentials match. Domain and address details
are supplemental information and are not mandatory for authentication. Each agent must create
an ECC-based private-public key pair, and the agent’s public credentials must be added to the
auth file before attempting to connect to the platform.

https://volttron.readthedocs.io/en/develop/platform-features/message-bus/vip/vip-overview.html

8

 Authorization

VIP authorization gives the platform owner the ability to limit the capabilities of authenticated
agents. For example, the platform owner can set “capabilities” to allow only certain agents such
as the PlatformDriver agent to publish to the “devices” topic. If any other agent attempts to
publish to “devices” topic, the platform will raise an “Unauthorized” error. Another example
would be adding capability to an agent’s RPC method. For example, setting “CAN_SET_TEMP”
capability to agent’s set_point() RPC method restricts its access to agents that have the
“CAN_SET_TEMP” capability defined in their auth file entry. More details about VIP
authorization can be found at https://volttron.readthedocs.io/en/develop/platform-
features/message-bus/vip/vip-authorization.html,

 RabbitMQ-based VOLTTRON

RMQ-based VOLTTRON uses the pika (https://pika.readthedocs.io/en/stable/) library for the
RMQ message bus implementation. The RMQ broker runs outside the VOLTTRON platform
and all the agents, including the platform, connect to the broker. RMQ exchange is responsible
for routing messages between agents. RMQ-based VOLTTRON uses SSL-based authentication
mechanism with x509 certificates. Each VOLTTRON instance needs to be set up to connect to
an RMQ broker, create exchange, create users for agents, generate certificates for connecting
to the broker, etc. After each agent connects to the broker, it creates a VIP queue and binds the
queue to the exchange with a unique binding key <instance-name>.<identity> and uses the
queue to send and receive messages from the exchange. The binding key is used for routing
and because each binding key is unique, the exchange will know where to forward the message
to.

 VIP in RabbitMQ VOLTTRON

To maintain backward compatibility with ZMQ-based VOLTTRON, one of the main goals of the
refactoring efforts was to decouple the VOLTTRON-specific code from the message bus
implementation without compromising the existing features of the platform. The next step was to
encapsulate all messages sent from the application code into a message bus agnostic VIP
message object. The message parameters continue to follow the VIP protocol frames such as
sender, receiver, protocol, subsystem, etc., but they are mapped to pika properties before
publishing the message. The message is published on the RMQ message bus using pika library
APIs, as follows:

Fit VIP frames in the PIKA properties dict
VIP format - [SENDER, RECIPIENT, PROTO, USER_ID, MSG_ID, SUBSYS,
ARGS...]
message_property = {
'user_id': userid, # USER_ID
'app_id': <Routing key of SENDER>
'headers': dict(
 recipient= <Routing Key of destination>, # RECEIVER
 proto='VIP', # PROTO
 user=user, # USER_ID
),
'message_id': msg_id, # MSG_ID
'type': <subsystem>, # SUBSYS

https://volttron.readthedocs.io/en/develop/platform-features/message-bus/vip/vip-authorization.html
https://volttron.readthedocs.io/en/develop/platform-features/message-bus/vip/vip-authorization.html
https://pika.readthedocs.io/en/stable/

9

'content_type': 'application/json'
}

The exchange looks at the destination routing key (binding key) and routes it to an appropriate
destination agent. On the receiver end, the pika message properties are examined and
appropriate action is taken. For example, if the subsystem property is “RPC”, it is processed by
the corresponding subsystem component of the agent code and sent higher up to the
application code.

 Authentication

RMQ-based VOLTTRON uses SSL-based authentication (Figure 1), rather than the default
username and password authentication. VOLTTRON adds SSL-based configuration entries to
the rabbitmq.conf file for RMQ broker to use during the setup process.

Figure 1. SSL-based authentication.

Every RMQ-based VOLTTRON instance has a single self-signed root Certificate Authority (CA)
and server certificate signed by the root CA. This is created during VOLTTRON setup and the
RMQ server is configured and started with these two certificates. Every time an agent is started,
the platform automatically creates a pair of public-private keys for that agent and a certificate
that is signed by the same root CA. When an agent communicates with the RMQ message bus
it presents its public certificate and private key to the server and the server validates whether it
is signed by a root CA it trusts; i.e., the root certificate it was started with. Because there is only
a single root CA for one VOLTTRON instance, all the agents in this instance can communicate
with the message bus over SSL.

 Authorization

This feature needs to be implemented in RMQ-based VOLTTRON. RMQ has several access
controls and permission settings that can be applied on the RMQ queues, exchanges, and
users to control access to them. This feature needs to be leveraged within RMQ-based
VOLTTRON and applied to resources used by VOLTTRON.

10

 Differences between ZMQ-based VOLTTRON and RMQ-
based VOLTTRON

ZMQ-based VOLTTRON RMQ-based VOLTTRON

Platform acts as the broker and is
responsible for routing messages

Separate broker runs outside the platform and all
agents connect to the broker. Exchanges are
responsible for routing messages.

Authentication is based on the ZAP protocol
using the ECC keys.

SSL-based authentication uses TLS x509 certificates.

Remote agent authentication is achieved by
adding the public key of the remote agent to
auth.json

Remote agent authentication uses Certificate-Signing
Request operation.

Custom agents such as ForwardHistorian
agent for forwarding messages from one
platform to another.

Shovel plugin can forward messages from one platform
to another.

VOLTTRON specific implementation for
multi-platform connection

Federation plugin can be used for multi-platform
connection.

Custom agents to connect to third-party
tools. Example: MQTT historian agent.

Tool integration using RMQ plugins (example:
https://www.rabbitmq.com/mqtt.html) or third-party
plugins (example:
https://www.elastic.co/guide/en/logstash/current/plugins-
integrations-rabbitmq.html)

Need to build custom agent to monitor the
status of the message bus

Management plugin that provides web user interface to
monitor status of message bus

• Message rates

• Resource usage of queues

• Data rates of client connections

Scalable multi-platform connections Highly scalable. It does not require O(n2) connections
between n brokers.

Table 1 Differences between ZMQ-based and RMQ-based VOLTTRON

 Performance Benchmarking

This section describes a comparison of ZMQ-based VOLTTRON and RMQ-based VOLTTRON
performance in a small system. For the purposes of comparison, several measurements were
conducted using VOLTTRON installed on a Raspberry Pi 4 model B. The Pi was running
Raspbian 10 and all tests were local to the system (that is, no physical devices, external
databases, or other services were used). The tests explored several different parameters as
described in sections below. The test configuration used a single platform driver with varying
numbers of instances of a fake device with 18 points. The driver was configured with zero offset
between devices and a default scrape interval of 1 minute. A single custom listener
agent is available in the scripts/scalability-testing/multilistener directory of the main VOLTTRON
repository. This agent was used to measure the time interval between two times, the timestamp
in the message header for the first message in a scrape conducted by the platform driver, and
the time at which the final message from the scrape was received by the listener. The time
interval values reported here are this interval averaged over five sequential

https://www.rabbitmq.com/mqtt.html
https://www.elastic.co/guide/en/logstash/current/plugins-integrations-rabbitmq.html
https://www.elastic.co/guide/en/logstash/current/plugins-integrations-rabbitmq.html

11

scrapes. For configurations with multiple listener agents, the time interval is also averaged over
the measurement made for each listener

 Scaling the Number of Devices

The first set of benchmarks was collected by running the default configuration described above
with the device scrape interval increased to 2 minutes and an increasing number of identical
devices installed. This is summarized in Error! Reference source not found., where the time
interval is as described above, and the normalized column is that value divided by the number
of devices.

 ZMQ RMQ

Number of Devices
Time Interval

(seconds)
Normalized
(seconds)

Time Interval
(seconds)

Normalized
(seconds)

2000 6.8425 0.0034 7.1926 0.0036

4000 15.7469 0.0039 15.3346 0.0038

6000 27.3608 0.0046 23.1164 0.0039

8000 38.9499 0.0049 30.1291 0.0038

10000 52.9024 0.0053 39.2204 0.0039

15000 92.7736 0.0062 59.5759 0.0040

Table 2 Scaling number of devices

From these results we see that for the lower numbers of devices, the time to complete a scrape
scales with the number of devices on either message bus. On ZMQ, at a sufficiently large
number of devices, the time to publish begins to increase more quickly with increasing numbers
of devices. The measurements were not continued to larger numbers of devices because a
publication time larger than the device scrape interval would not produce a well defined
measurement with the code as implemented.

The behavior using RMQ did not scale worse than linearly with the number of devices for the
cases considered. This implies that as the number of devices and hence the corresponding
publications increase to a very high value, RMQ fairs better than ZMQ. RMQ has built-in load
balancing capabilities, which helps to balance the heavy traffic on the message bus and hence
the performance of RMQ is better with a larger number of publications. RMQ also has several
back pressure capabilities to regulate the high amount of traffic from producers as explained in
https://www.rabbitmq.com/blog/2015/10/06/new-credit-flow-settings-on-rabbitmq-3-5-5/.

 Python Version Comparison

In addition to the measurements of the previous section, a comparison was made between
performance when running using python 2 and python 3. Because there are subtleties when
installing erlang dependencies on arm-based system, these tests were conducted using a
Debian 10 (Buster) running on relatively small virtual machines on a MacBook Pro. Each virtual
machine was allocated 1 CPU and 1024 MB of RAM. The full python versions used were 2.7.16
and 3.7.3, and for the python 2 tests the releases/6.x branch of VOLTTRON was used because
VOLTTRON versions 7 and above are incompatible with python 2. The measurements were
otherwise done in the same way as in Section 6.1.

https://www.rabbitmq.com/blog/2015/10/06/new-credit-flow-settings-on-rabbitmq-3-5-5/

12

The results of these comparisons are summarized in Table 3. There it is clear that for any
combination of number of devices and message bus considered, the performance of
VOLTTRON version 7 running on python 3 is faster than using VOLTTRON version 6 with
python 2. In addition to the performance improvements, at this time python 2 has reached end
of life and is no longer being supported by the python community. Python 3 and with
VOLTTRON 7 or newer is therefore recommended for all new systems.

 ZMQ RMQ

Number of
Devices

Time
Interval

(seconds)
Normalized

(seconds)

Time
Interval

(seconds)
Normalized

(seconds)

Python 2 4000 22.6471 0.0057 11.9526 0.0030

 8000 49.2673 0.0062 41.5333 0.0052

Python 3 4000 11.4655 0.0029 4.4405 0.0019

 8000 32.0258 0.0040 14.9644 0.0019

Table 3 Python Version Comparison

 Scaling the Number of Agents

The third set of benchmarks fixed the number of devices at 25 and scaled the number of
listening agents. Here the results are more similar between the two buses, with both showing a
publication time that exceeds the scrape interval at around 40 listeners installed. The results are
summarized in Error! Reference source not found..

Number of Listeners ZMQ (time interval) RMQ (time interval)

1 0.1385 0.0967

5 0.2649 0.2912

10 0.3543 0.4311

20 0.6048 0.6192

40 0.9850 0.9401

60 1.3602 1.3350

100 2.1723 2.1973

Table 4 Scaling number of agents

 Large Number of Points per Device

To compare the performance of both message buses that had a large payload size, a single
measurement was made on each bus for the case of a single listener with 400 devices installed
and 4998 points per device. In this case, the average publish interval over five runs on ZMQ
was 579.8724 seconds (1.4497 seconds/device), while on RMQ it was found to be 38.9306
seconds (0.0973 seconds/device). The RMQ bus completed these publications in less time than
scrape interval, indicating that the configuration could be sustained, whereas with ZMQ the
publication time results in an accumulation of backup and eventual failure or data loss. This
implies that for a large message payload size, RMQ fairs much better than ZMQ.

13

 Qualitative Historian Backlog Test

The final set of observations went back to looking at performance as a function of the number of
devices. In this case, the custom listener agent was replaced by the SQLite historian and the
driver was configured to perform scrapes continuously (as opposed to stopping after a five-
scrape measurement). The platform was monitored to see if the historian was able to keep up
with the rate of messages being published, or if it started to build up a backlog. On both
message buses, no backlogging was observed until the publication rate had exceeded the
default limit of the historians. The default behavior publishes points received in batches and
limits the amount of time spent inserting data into the database to also allow for receiving new
data, and this limit was reached when the number of devices was increased from 1600 to 3200.
The performance of the platforms was not observably different between the two message bus
cases in this test.

It is important to note that this test was done using default configurations only. It is certainly
plausible that a particular use case could finetune or use alternate configurations that would
allow significantly larger numbers of points to be consumed. Some examples would be
modifying the batch size used by the historian, having multiple historian agents each subscribed
to a subset of points, or using a historian for a different SQL flavor using different storage.
These configurations should be made specific to the particular use case.

 Deployment Use Cases

A typical deployment scenario of VOLTTRON is installing a VOLTTRON instance in one or
many buildings within a campus to collect building device data from individual buildings and
send them to a central instance for monitoring, control, or data visualization purposes (Figure 2).
The central instance can be running in central server or in the cloud. The PlatformDriver
(formerly MasterDriver) agent is configured to collect data from different types of devices in the
buildings that typically use BACnet or Modbus protocols such as heating, ventilation, and air-
conditioning (HVAC), heat pumps, water heaters, air-handling units, etc. The PlatformDriver
agent is configured to perform regular scrapes of device data points such as zone temperature,
power, etc., at a pre-configured polling frequency. The scrapes are then published on the
message bus on the “devices” topic to be picked up by interested agents. A ForwardHistorian
agent is responsible for forwarding data from a local instance to a remote instance. If a
VOLTTRON instance in each individual building needs to send messages (for example, device
messages) to the central instance, then a ForwardHistorian agent needs to be installed on that
instance with connection set up to remote central instance. The forwarder will then forward
messages from the local to the remote instance for monitoring, control, or data visualization
purposes. The remote instance needs to authenticate any incoming connection either through
the command line or web interface. The central instance has a data historian (for example,
SQLite or mongo or timescale historian) for storing data collected from the devices, results from
experiments, etc.

14

Figure 2. Typical VOLTTRON deployment.

 Simple Installations

ZMQ-based VOLTTRON installation steps are easy and self-contained. Non-software engineers
can quickly bootstrap the environment with minimal steps and start running the platform. It
provides easy-to-use and robust security feature using the ECC key mechanism that is known
to provide high security with short, fast keys. If an agent on one instance, V1, wants to connect
to another instance, the public key of the agent can be easily copied over to a remote instance
to provide authentication to the connecting agent. In contrast, RMQ-based VOLTTRON
installation has several more steps with respect to configuring the RMQ broker and setting up
SSL certificates for the VOLTTRON instance and its agents. During the setup process, each
VOLTTRON instance needs to be configured to create its own CA and generate certificates
signed by same CA and configure the RMQ broker and agents to use the certificates properly.
This process has been automated but involves more steps than ZMQ-based VOLTTRON’s
single instance setup. Establishing connections between multiple connections is more complex
when using SSL certificates. For example, if an agent on one instance, V1, wants to connect to
another instance, V2, it must initiate a web-based certificate-signing request operation with the
remote instance. The administrator/platform owner on the remote instance can accept/reject the
incoming connection request. If accepted, the remote instance creates a signed certificate and
returns it to the agent, which is then used to establish the remote connection. Similar to agent
authentication, we are in the process of streamlining federation and shovel connections with
SSL certificate authentication.

ZMQ-based VOLTTRON is perfect for single platform deployment or multi-platform deployment
use cases that have fewer VOLTTRON instances connecting to a central instance or to each
other. ZMQ-based VOLTTRON can hold ~100 (based on Section 6.2) agents per VOLTTRON
instance without any degradation in the message bus performance. ZMQ-based VOLTTRON
can handle a low to medium volume of traffic, as shown in the benchmark results in Sections
6.2 and 0. As the number of devices and payload size became very high, performance of ZMQ-
based VOLTTRON starts to degrade. This is because the router module within the VOLTTRON
process that is responsible for routing all the messages becomes a performance bottleneck.
Significant changes must be made to ZMQ-based VOLTTRON to add back pressure capabilities

15

and high availability measures for very large-scale deployment. Typically, message-based
systems become overloaded when a publisher is sending messages at a rate faster than the
consumer can accept and process. We can then apply back pressure mechanisms to regulate
the traffic. Some of the measures are forcing the publisher to stop sending until messages are
consumed, discarding messages if the message bus limit is reached, or creating pull-based
systems where consumers pull the messages from publisher’s queue when it is ready. RMQ-
based VOLTTRON has these features and hence is recommended for large-scale deployment.

 Installation with a Very Large Message Payload

RMQ-based VOLTTRON is very well suited for deployment scenarios in which the agents are
sending very high volumes of data over the message bus; for example, an agent configured to
collect data from a few hundreds of devices, each having 500–1000 data points, and publish the
data collected over the message bus at regular intervals. As shown in Section 0, in such a
scenario RMQ-based VOLTTRON can handle the traffic much better than ZMQ-based
VOLTTRON.

 Deployment Options

For a multi-platform connection, many of the features had to be custom-built in ZMQ-based
VOLTTRON. For example, for forwarding messages from one platform to another, a custom
ForwardHistorian agent with a caching feature had to be created in ZMQ-based VOLTTRON.
The RMQ library provides shovel plugin that performs a similar operation. The shovel plugin
allows users to reliably and continually move messages from a source in one broker to a
destination in another broker. A shovel behaves like a well-written client application that
connects to its source and destination broker, consumes messages from the source queue, and
re-publishes messages to the destination if the messages match the routing key (or the topic).
RMQ-based VOLTTRON has an integrated shovel plugin feature and by taking a few simple
steps the shovel can be reconfigured to forward messages of desired topics from a local
VOLTTRON instance to a remote VOLTTRON instance. One drawback of the shovel plugin
compared to the ForwardHistorian agent is that it has limited caching capability and when
connection to a remote instance is lost, the data may be lost after a pre-configured maximum
cache size is reached.

Another way to connect multiple platforms is to make and manage the connections at the
platform level. This alleviates the need for individual agents to connect to the remote instance
directly for sending/receiving messages to/from the other platform. In ZMQ-based VOLTTRON,
this is accomplished through customizations in the router module, which is responsible for
routing messages. With this type of connection, agents can send and receive messages to and
from other platforms without explicitly managing the connection. All the connected platforms can
work together as group. This type of connection provides loose coupling between platforms; i.e.,
not everything needs to be shared with other platforms, and there can still be local-only
components and messages. This is a very useful feature. One of the drawbacks of this custom-
built feature is that it is not highly scalable because it needs O(n2) connections between n
VOLTTRON instances. Another drawback is that multiple VOLTTRON instances cannot be
daisy chained together.

Loose coupling between multiple RMQ instances can be achieved using RMQ’s federation
plugin. The federation plugin allows users to federate exchanges and queues. A federated
exchange or queue can receive messages from one or more upstream (remote) exchanges and

16

queues on other brokers. A federated exchange can route messages published upstream to a
local queue. A federated queue lets a local consumer receive messages from an upstream
queue. This plugin does not require O(n2) connections for n brokers and hence scales better
than its ZMQ-based counterpart. Another advantage of federation is its ability to daisy chain
multiple brokers, which provides more flexibility in deployment. RMQ-based VOLTTRON
integrates with the federation plugin and enables loose coupling between VOLTTRON instances
with just a few simple configuration steps. This allows agents to publish/subscribe to messages
and make RPC calls to each other without having to manage the connections themselves. It is
also highly scalable, so users can connect numerous buildings spread over a large geographical
area. Clusters of VOLTTRON instances also can be tightly coupled to each other using RMQ’s
cluster plugin. This is not currently integrated with RMQ-based VOLTTRON but can be
integrated if there is a community need.

Consider an example energy management system shown in Figure 3.This system forecasts and
optimizes zonal energy demand by Machine Learning (ML) of occupant behavior and
environmental data from each zone to improve occupancy comfort and reduce energy cost.
VOLTTRON is installed at the campus, building, and zonal levels. The VOLTTRON instances at
the zonal level are configured to collect data from and control devices in their respective zones.
Typical devices are HVAC, lighting, and smart plugs. The device information is sent upward to
the building-level VOLTTRON and similarly building-level status is sent to the campus node to
be aggregated at the campus level. The building status and occupancy behavior are also
continuously sent to a ML application in the cloud. The ML application uses the occupancy
behavior information and environment data to learn the behavioral pattern and make real-time
predictions for reducing energy demand and increasing occupancy comfort. Based on those
predictions, control commands are sent to building and zonal VOLTTRON instances for
adjusting the setpoints of the respective devices. The connection between building-level
VOLTTRON instances and ML applications in the cloud needs to be secure to prevent
cybersecurity attacks on the campus infrastructure if the ML application is compromised. The
ML application is built using either RMQ or MQTT or Kafka message libraries.

If a ZMQ-based VOLTTRON installation is used for this system, the VOLTTRON instances at
campus, building, and zone levels can be connected using custom-built multi-platform
connection. A custom agent that allows integration with RMQ/MQTT/Kafka with proper security
features must be created to forward messages from building instance to ML application and
back. Additional authorization features need to be added to control access of resources in
building level VOLTTRON instances and restrict traffic being sent from ML application to
VOLTTRON.

If an RMQ-based VOLTTRON installation is used, then federation plugins can be used to
connect the campus, building and zonal instances. We can create two-way federation links
between zone and building-level VOLTTRON instances to send device status and control
actions. Similar two-way federation links can be created between building and campus-level
instances to send building-level status and control actions. If the ML application is built using
MQTT or Kafka, RMQ provides easy integration with these libraries in a secure manner using
SSL certificates. If the ML application is built using RMQ, then a one-way federation link needs
to be created to forward messages from the building to the ML app. A two-way connection is not
recommended because it would expose campus infrastructure to components in the cloud.
Instead, a shovel connection can be created to send control commands from the ML app to the
building-level VOLTTRON instances. In this way, users can limit the number of topics that can
be sent in this direction. Since it is a matter of configuring existing and tested features in RMQ-
based VOLTTRON, using RMQ-based VOLTTRON is recommended for this use case.

17

Figure 3. Flexible deployment.

 Integration with Third-Party Tools

 Message Queuing Telemetry Transport

MQTT is an Organization for the Advancement of Structured Information Standards standard
message protocol for Internet of Things applications. It is widely used in the automotive,
manufacturing, telecommunications, oil, and gas industries. Recently, there has been wide-
spread use of MQTT in the buildings and power systems domain for data collection and
visualization applications. Many VOLTTRON users need VOLTTRON and MQTT based
applications be integrated together such that these heterogenous systems can work together.
One such user request is to integrate the LORAWAN gateway with VOLTTRON to collect data
from air quality sensors to monitor the air quality in buildings. In addition, the LORAWAN
gateway can connect to many other edge devices such as vending machines, water meters,
etc., each speaking different message protocols but primarily MQTT. For VOLTTRON to collect
data and send control actions to these edge devices, it must have an integration mechanism
with MQTT. RMQ-based VOLTTRON uses RMQ’s MQTT plugin
(https://github.com/VOLTTRON/external-clients-for-rabbitmq/tree/master/mqtt-volttron-client) to
establish two-way communication with MQTT devices. In contrast, if ZMQ-based VOLTTRON is
used, custom-built MQTT historian agent can be used to send data from VOLTTRON to MQTT
client. But the agent must be extended for data to flow from MQTT client to VOLTTRON.

 RabbitMQ

RMQ-based VOLTTRON can be easily integrated with any other RMQ-only client application.
An example use case would be a cyber defense RMQ-based application that detects any
malicious data in building sensor measurements. Here, VOLTTRON collects data from buildings
network and sends them to an RMQ-based analysis module containing forward decision and

https://github.com/VOLTTRON/external-clients-for-rabbitmq/tree/master/mqtt-volttron-client

18

classifier components. If the analysis module declares the data malicious, they are not passed
to the destination endpoint. Because the analysis module uses the RMQ messaging library,
RMQ-based VOLTTRON can be set up to collect data from the building network. The RMQ-
based analysis module (INGRESS) can connect to the same broker as an external client and
read data from VOLTTRON’s message bus (Figure 4). To provide the same integration in ZMQ-
based VOLTTRON, a custom agent needs to be created to forward data to the RMQ-based
INGRESS application.

Figure 4. INGRESS application.

 Elasticsearch

Elasticsearch is a tool used to reliably and securely search, analyze, and visualize data in real
time. It is typically used for performing visual analytics on the ingested data. Elasticsearch can
be used to ingest buildings data and perform data analysis to detect anomalies in data, such as
the zone temperature being higher than expected, etc. RMQ-based VOLTTRON can be
integrated with Elasticsearch using Apache Nifi (https://nifi.apache.org/docs.html), which is a
data flow management tool. Apache Nifi can be configured to pull data from any RMQ data
source (in our case it will be RMQ-based VOLTTRON) and forward the data to Elasticsearch. It
essentially creates a data pipeline between the two endpoints. After the data are ingested by

ElasticSearch, they can be stored in Kibana and users can use various features in Elasticsearch
to create data visualization and anomaly detection applications. Integration of Elasticsearch with
ZMQ-based VOLTTRON would involve creation and maintenance of a custom agent to forward
data to Apache Nifi and Elasticsearch.

 Conclusion

In general, simpler VOLTTRON deployments are good fits for the ZMQ-based message bus:
single/low number instance install, little peer-to-peer interaction, and interacting with devices
with existing drivers. RMQ comes into the forefront for the more complex deployments: large

https://nifi.apache.org/docs.html

19

numbers of instances communicating peer-to-peer and interacting with MQTT and other third
parties.

This document will continue to be updated to remain current with platform development and as
the community gains experience using the message buses in different deployments. We
welcome users of the platform to engage with the authors to relate their experience and help
make this guidance document as relevant to the community as possible.

Pacific Northwest
National Laboratory

902 Battelle Boulevard

P.O. Box 999

Richland, WA 99354

1-888-375-PNNL (7665)

www.pnnl.gov

http://www.pnnl.gov/

