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Abstract 

This document details the development and testing of market-based transactive controls for commercial 
building heating, ventilation, and air-conditioning systems. These controls are intended to serve the 
purposes of reducing electricity use through conservation, reducing peak building electric demand, and 
providing demand flexibility to assist with power system operations. This report is the summary of the 
first year of work conducted under Phase 1 of the Clean Energy and Transactive Campus Project. The 
methods and techniques described here were first investigated in simulation, and then subsequently 
deployed to a physical testbed on the Pacific Northwest National Laboratory campus for validation. In 
this report, we describe the models and control algorithms we have developed, testing of the control 
algorithms in simulation, and algorithm deployment in a physical testbed. Results from physical 
experiments support previous simulation findings and provide insights for further improvement. 
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Summary 

This report is a summary of the first year of work conducted under Phase 1 of the Clean Energy and 
Transactive Campus (CETC) project. In this report, we detail the development, deployment, and testing of 
a market-based transactive control application for commercial building heating, ventilation, and air-
conditioning (HVAC) systems. Specifically, we discuss the application of this control application to a 
variable-air-volume (VAV) system common to many commercial buildings.  

Market-based control, an example of transactive control, is a distributed control strategy. In this 
document, these terms are used interchangeably. In a market-based control system, a virtual market 
enables transactions between HVAC components for the exchange of “commodities,” such as electricity 
power or cooling/heating energy. Each component is represented by an “agent” that is self-interested and 
tends to maximize its own benefit. Agents submit bids for commodities based on the benefit they receive. 
The market receives bids from all agents, and determines the clearing price of the commodity. Each agent 
then adjusts its consumption based on the cleared price. Market-based control is distributed and scalable, 
making it suitable for large-scale applications. 

Markets may be defined within a building according to commodity (e.g., hot water), physical relationship 
(e.g., all VAV boxes connected to an air handler), or some combination thereof. In this work, we have 
taken this concept and created a market in a commercial building HVAC system that allows zones to bid 
for cooling energy with the air handler and chiller, which then bids for electricity from the electric market 
to generate the necessary amount of cooling. The purpose of this system is to expose the building’s 
inherent electric demand flexibility, and thus allow integration of building operation with power system 
operation. The structure of our market is bi-level—both cooled air and electricity are commodities. VAV 
agents, representing the thermal zones needing cool air for conditioning, purchase the cool air from the 
AirMarket. This market has a single supplier, the AHUChiller agent, which in turn purchases the 
electricity it requires to generate the cool air from the ElectricityMarket. The ElectricityMeter supplies 
electricity to the ElectricityMarket. In addition, we extend the market-based control for VAV terminals to 
heating operation and describe the market structure for a VAV system that has hot water reheating 
capability.  

The control system is composed of a set of models, each representing separate conditioned areas, 
equipment, and markets. Models are control-oriented models—all of which are inverse models—and are 
therefore relatively simple compared to those used in detailed energy simulation. The developed models 
include 1) a zone model to predict the HVAC energy demand based on outdoor dry-bulb temperature and 
other zone parameters, 2) an air handler model used to estimate fan power and cooling load given real-
time measurements from the building automation system, 3) a simple chiller model that estimates the 
electric demand of the district chilled water plant required to serve the cooling load calculated by the air 
handling unit, and 4) a set of rooftop unit models for the future deployment of transactive controls to 
commercial buildings that have one or more zones conditioned by packaged rooftop heat pumps. For each 
model, we describe the mathematical formulation and the method by which we tune the models to predict 
the performance of the physical system. 

Simulations of transactive market controls were performed using a new co-simulation capability 
developed for this project. This new co-simulation capability, built upon the VOLTTRONTM platform, 
allows testing and validation of the developed algorithms against our EnergyPlus building simulation 
model within the target deployment environment. A VOLTTRON agent was developed to manage 
communication between the VOLTTRON message bus and the EnergyPlus simulation engine. We have 
validated the VOLTTRON-based market application against previous simulation cases using this 
capability. 
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The first simulation case used a fixed price to test market operation independent of changes in price from 
one clearing interval to the next. Depending on the price used, this case resulted in demand reduction and 
energy savings. In the second demand-limiting case, we imposed a demand limit to the total (fan plus 
chiller) electric demand at each market-clearing interval. The third dynamic price case tested the ability of 
the market and building to react to price signals that changed over time. Table S.1 summarizes the 
impacts of the three incentive signals on three metrics of interest: building peak demand, total energy 
consumption, and zone temperature deviation. Figure S.1 shows simulated electricity demand from the 
fixed price case compared to the baseline. 

Table S.1.  Results of transactive market simulation cases. 

 Peak Load (%) Energy 
(%) 

Temperature 
(°C) Case Mean Min Max 

Fixed Price $55 5.6 -0.6 11.4 4.7 -0.07 
 $60 1.1 -4.2 6.9 1.0 0.30 
 $65 -4.2 -9.3 1.4 -3.1 0.61 
 $70 -8.5 -12.3 -5.1 -7.1 0.85 
Demand Limit  -6.2 -6.3 -6.1 -1.5 0.17 
Dynamic Price  5.8 -4.2 14.2 3.1 -0.03 

 
Figure S.1.  Comparison of $65/MW fixed price simulation to baseline. 

These market-based controls have been deployed in a small commercial building on the Pacific Northwest 
National Laboratory (PNNL) campus to test the market-based control on a physical system. Each agent 
was configured to receive measured real-time values from the building automation system (BAS). These 
values set the state of the models so that calculations—and thus market bids—reflected current 
conditions. VAV agents controlled the cooling set points in occupied, standby, and unoccupied modes 
strictly within limits established with the building manager. Two types of experiments were performed, 
corresponding to the flat pricing and demand-limiting cases explored in simulation. A number of issues 
were encountered during testing that invalidated early results.   

We evaluated the performance of the market-based controls during the physical tests using two methods: 
1) a simple, naïve approach that compares experimental results from performance measured during a 
similar “baseline” day, and 2) a statistical approach that attempts to model building performance based on 
a set of relevant predictors selected by their association with the underlying physical processes that 
determine building energy use. Results from these experiments generally supported previous findings 
from simulation studies, and provided insights for further improvement. Predicted baseline and 
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experimental results are shown in Figure S.2. In contrast to the direct comparison method, the regression 
method shows reduced demand and energy during the June 29 experiment across both fan and chiller. 

 
Figure S.2.  Comparison of measured and model-predicted chiller and fan power, June 29. 

Experimental results show promise for the application of market-based controls in commercial building 
HVAC systems. Savings were modest compared to results from previous simulations, but we believe they 
can be improved. Some differences between experiment and simulation were expected due to a mismatch 
between the EnergyPlus model and the physical building, while many differences may likely be attributed 
to imperfect modeling of building dynamics. In simulation, decisions made by VAV agents were acted 
upon immediately and control was perfect; in a physical experiment, control decisions were delayed, and 
control was imperfect.  

This work forms the foundation for a larger deployment of control methods in multiple buildings on the 
PNNL campus. The larger deployment is intended to demonstrate the use of transactive controls in 
commercial buildings for constructing transactive campuses capable of energy-efficient operations that 
enable greater penetration of renewable resources and a more robust and reliable electric grid. During 
year two of this CETC project, the transactive market will be deployed in additional buildings on the 
PNNL campus. Models will be extended to heating operation, and new models will be developed to 
enable transactions in common HVAC system topologies. 
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Acronyms and Abbreviations 

°C degree(s) Celsius 
°F degree(s) Fahrenheit 
ACM Ascent Control Module 
AHRI Air-Conditioning, Heating, Refrigeration Institute 
AHU air handling unit 
ANN artificial neural network 
ANSI American National Standards Institute 
BACnet Building Automation and Control Network 
BAS building automation system 
bhp brake horsepower 
CAISO California Independent System Operator 
CETC Clean Energy and Transactive Campus project 
CFM cubic feet per minute 
COP coefficient of performance 
CRBM Continuous Restricted Boltzmann Machine 
ft2 square foot(feet) 
EER energy efficiency ratio 
HP heat pump 
HMM Hidden Markov Model 
HVAC heating, ventilating, and air-conditioning 
IP Internet Protocol 
KKT Karush-Kuhn-Tucker 
kW kilowatt(s) 
LBNL Lawrence Berkeley National Laboratory 
m3/s cubic meter(s) per second 
MW megawatt(s) 
NAE Network Automation Engine 
NUC Next Unit of Computing 
PC Personal Computer 
PNNL Pacific Northwest National Laboratory 
R2 coefficient of determination 
RTU rooftop unit 
SVM support vector machine 
SWM social welfare maximization 
UML Unified Modeling Language 
VAV variable air volume 
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1.1 

1.0 Introduction 

This document describes the development and testing of market-based transactive control of commercial 
building heating, ventilation, and air-conditioning (HVAC) systems to serve the purposes of reducing 
electricity use through conservation, reducing peak building electric demand, and exposing demand 
flexibility to assist with electric system operations. This report is a summary of the first year of work 
conducted under Phase 1 of the Clean Energy and Transactive Campus Project (CETC). The methods and 
techniques described here were first investigated in simulation, and then later deployed in a physical 
testbed on the Pacific Northwest National Laboratory (PNNL) campus for validation. In this report, we 
describe the models and control algorithms we have developed, testing of the control algorithms in 
simulation, and subsequent testing of the algorithms in the physical testbed.  

Algorithms were deployed as agents on the VOLTTRON platform. This work forms the foundation for a 
larger deployment of control methods in multiple buildings on the PNNL campus—and on project partner 
campuses abroad—to demonstrate the use of transactive controls in commercial buildings for constructing 
transactive campuses capable of energy-efficient operations that enable greater penetration of renewable 
resources and a more robust and reliable electric grid. 

1.1 Objective 

This work represents the first phase of a multi-year project to design, test, and deploy transactive controls 
on the PNNL campus. The goal of this work is to lay a foundation for further development and 
deployment of transactive controls in the small commercial buildings thereon. The algorithms, models, 
and software agents that are the product of this work will serve as a template for the future phases that 
follow. In addition to these specific products, we are guided three high-level objectives aimed at 
supporting our future efforts: 

• Develop a scalable agent-based software application for market-based transactive building control 
methods. 

• Demonstrate and validate the developed methods and software in a physical testbed. 

• Produce deployment-ready software and documentation that allows others to adopt transactive 
building controls. 

This report deals primarily with the theory and methodology behind market-based controls for 
commercial buildings, while the companion document (Corbin 2016) describes the software agents and 
their configuration in more detail. 

1.2 Outcomes 

The outcomes of the first phase of the CETC project are as follows: 

• Implementation of a market-based transactive control algorithms based on prior PNNL research (Hao 
et al. 2016) in VOLTTRON. This has enabled us to deploy our algorithms to a secure, scalable 
platform capable of communicating with a building automation system (BAS). 

• Development of a co-simulation capability that couples VOLTTRON to EnergyPlus. This has 
allowed us to validate the newly implemented VOLTTRON-based transactive control agents in 
simulation against a high-fidelity building energy model. 
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• Development of model-tuning methods that are easily automated and encapsulation of these methods 
in a VOLTTRON agent. Automated model tuning enables scaling of market-based controls to 
multiple buildings and is central to widespread adoption. 

• Testing of the VOLTTRON agents and the market-based controls in physical testbed. While 
additional testing is required, the lessons learned through the testbed process informs future 
experiments and modifications to our algorithms.  

1.3 Structure of Document 

This document is divided into four main sections: 

• Section 2.0, Transactive Market Model, covers the basics of the market-based method for commercial 
building HVAC cooling control applied in this project. This section describes the market structure, 
bidding and clearing process, and an extension of the method to heating control. 

• Section 3.0, Thermal and HVAC Component Models, describes the models used in the market-based 
method to simulate the energy behavior and performance of HVAC components. We present the 
mathematical formulation of these models, their validation, and simple methods for tuning model 
parameters. 

• Section 4.0, Market Simulation and Cross Validation, describes a co-simulation capability developed 
in VOLTTRON for the testing of the market-based system. Within this environment, we perform 
three case studies using a high-fidelity model of the physical building in which the market-based 
system will be deployed. 

• Section 5.0, Physical Experiments, describes the physical testing performed on a small commercial 
building on the PNNL campus. We begin with a summary of the tests performed and a brief 
description of the integration and deployment of the market-based system in the building’s BAS. 
Next, we describe our analysis methodology and conclude with a discussion of the experimental 
results. 

The document concludes with Section 6.0, Conclusions and Next Steps, in which we briefly summarize 
the results of the work, lessons learned, and potential next steps. 

 



 

2.1 

2.0 Transactive Market Model 

In this section, we describe the basic operating principles of transactive markets and their application to 
the control of commercial building HVAC systems. We introduce the concept of market-based control, 
then discuss the market structure applied to the variable-air-volume (VAV) system investigated in the 
CETC project, and describe the bidding and clearing process that occurs for such a system. We conclude 
the section with an extension of the developed method to the heating operation of commercial buildings. 

2.1 Background and Significance 

In the United States, the building sector accounted for the largest portion of primary energy consumption 
in 2010 (DOE 2011). Building energy use is expected to increase by around 31% from 2010 to 2030 (EIA 
2015, DOE 2011. Employing the use of appropriate control systems can achieve highly energy-efficient 
buildings. Although conventional building control systems are highly capable and able to realize desired 
operation at relatively high levels of efficiency, they do not guarantee optimal building operation in terms 
of energy performance or ability to coordinate with the electric power grid (Katipamula et al. 2006). 

New building control strategies are of interest in order to improve energy performance and achieve better 
integration with electric grid operations. These new building control strategies should have the following 
characteristics:  

• They should not break existing control loops to simplify integration and minimize possible conflicts. 

• They should be readily extensible such that limited efforts are required to adjust the control strategies 
if there are changes to the controlled systems, or if they are applied to different building types. 

• They should enable coordination of energy use at various scales—from campus to city to region—and 
allow buildings to assist with the stable, efficient, and cost-effective operation of the electric grid.  

Market-based control is an approach that can potentially realize these objectives. 

2.2 Market-Based Control 

Market-based control, an example of transactive control, is a distributed control strategy. In market-based 
control, a virtual market is developed to encourage the competition among controlled devices for 
“commodities,” such as electricity power or cooling/heating energy. Each controlled device is represented 
by an “agent.” Each agent is self-interested and tends to maximize its benefit. The agents submit bids for 
the commodities based on how much benefit they receive from a certain amount of the commodity. The 
market clears after receiving bids from each agent and determines the clearing price of the commodity. 
Each agent then adjusts its consumption based on the price. 

Market-based control has several advantages that make it very suitable for large-scale application. These 
advantages include the following:  

• Information exchange occurs only between the agents and the market. Each agent does not need to 
communicate with other agents. This feature makes the market-based control easy to extend. For 
example, if new agents are introduced into the market, no additional modification is required, in 
contrast to central control schemes. In addition, because the only information exchanged is the bid, 
the privacy of each agent is respected.  
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• Market abstractions provide an intuitive high-level view of the optimal allocation problem. For 
example, the commodity and bid price are familiar concepts to most people. This helps to establish 
trust and understanding in the system. This feature makes the market-based control more attractive 
and acceptable to building owners and operators compared to many “black-box” optimization 
approaches proposed in the literature.  

Because of the advantages mentioned above, market-based control is getting more attention in the 
building research arena. For example, Li et al. (2016) developed a market-based control for a system in 
which a population of residential air conditioners was engaged to reduce peak electricity power. Each 
residential air conditioner adjusted its thermostat according to the output of the market-based control. 
Hubermand and Clearwater (1995) designed a market-based controller for a VAV system in order to 
fairly distribute supply airflow among the thermal zones in a commercial building. We have previously 
proposed a market-based control for a commercial building VAV system, which can be used for peak 
load shaving, load shifting, and building energy conservation (Hao et al. 2016). 

2.3 Market Structure for Commercial Building VAV Systems 

Power markets are used extensively today to negotiate the delivery price and quantity of electricity in the 
bulk electricity generation and transmission system. The result is a dynamic flux of prices and quantities 
that change on a minute-to-minute basis. As consumers of electricity, we are insulated from much of the 
volatility of electricity prices, but this may soon change as power markets extend into the distribution 
system to address opportunities introduced by an increased adoption of distributed energy resources 
(DERs). By doing so, the flexibility of these DERs may be leveraged to address power system constraints 
and incentivize more efficient generation and distribution of electricity. 

A power market may be organized into multiple layers consisting of regional and local markets arranged 
in a hierarchy: market participants bid into their local market, which then bids into the regional market 
above. Each level of the market provides a layer of abstraction that enables scalability and security. We 
can extend this multi-level market analogy to commercial building systems. That is, we can define 
markets within a building according to commodity (e.g., hot water), physical relationship (e.g., all VAV 
boxes connected to an air handler), or some combination thereof. 

In this work, we have applied this concept to the control of a commercial building VAV system in order 
to leverage the inherent flexibility provided by the building, and to better balance cooling demands within 
the building, while responding to external signals indicative of power system objectives. The proposed 
market structure is shown in Figure 2.1, 

The bi-level structure of our market consists of both cooled air and electricity as commodities. VAV 
agents, representing the thermal zones needing cool air for conditioning, purchase the cool air from the 
AirMarket. This market has a single supplier, the AHUChiller agent, which in turn purchases the 
electricity it requires to generate the cool air from the ElectricityMarket. The ElectricityMeter supplies 
electricity to the ElectricityMarket. 

Although only three VAV agents are shown in Figure 2.1, there may be any number of VAVs associated 
with a single AHUChiller, as well as any number of AHUChillers within the building, allowing for 
AHUChillers to “compete” for the electricity resource. In addition, other agents may be introduced to buy 
electricity within the building electricity market, or if storage or distributed generation is present, to sell 
electricity to the electricity market. The flexibility of the structure and, importantly, the bidding and 
clearing process allows for any number of variations. 



 

2.3 

 
Figure 2.1. Unified Modeling Language (UML) object diagram of the two-commodity transactive market 

implemented in this project. 

In the simulations that follow in Section 4.0, the ElectricityMeter is responsible for bidding the electricity 
supply curve. In alternative structures, the meter may instead be responsible for bidding the building 
electricity demand curve into a market one layer above. For example, it may bid into a campus, micro-
grid, or distribution market where price is determined, or, an aggregate electricity demand curve at this 
layer may be bid into yet another layer at the regional level, or higher still. 

2.3.1 General Bidding and Clearing Process 

The market we have designed is a variation of a double-blind auction, in which each market participant 
bids to buy or sell a commodity for a given price. In contrast to other common implementations, 
participants do not bid single price-quantity pairs. Instead, they bid a price-quantity curve, or “flexibility 
curve” into their respective markets. Market participants may be both buyers in one market and sellers in 
another; the AHUChiller agent is an example of a market participant. 

Settling of the market is a “single shot” process that begins with bidding that progresses from the bottom 
up and concludes with a clearing of the markets from the top down. We refer to this as “single shot” 
because there is no iteration required to find the clearing price or quantity at any level of the market 
structure. The steps of the process are as follows: 

1. Each VAV generates an air demand curve and bids its curve into the air market. 

2. The AirMarket aggregates the bids of the zones into an aggregate air demand curve and 
communicates this to the AHUChiller.1 

                                                      
1 Because the air handling unit (AHU) receives the aggregate air demand curve, the proposed market cannot be 
considered a pure double-blind auction. Alternatively, the AHU may instead bid an electricity demand curve based 
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3. The AHUChiller computes the electricity and price to serve each point on the aggregate curve.2 

4. The AHUChiller submits the resulting aggregate electricity demand curve to the electricity market. 

5. The ElectricityMeter submits an electricity supply curve to the electricity market. 

6. The ElectricityMarket determines the intersection of electricity supply and demand curves and 
broadcasts the cleared electric price and quantity. 

7. The AHUChiller receives the cleared electric price and quantity, and calculates the cleared air 
quantity. 

8. The AHUChiller bids the cleared quantity into the air market as an air supply curve3. 

9. The AirMarket determines the intersection of the air supply curve and the aggregate air demand curve 
and broadcasts the cleared air price and quantity. 

10. Each VAV receives the cleared air price and adjusts its thermostat to modify its cooling demand. 

Once the market has cleared, the process begins again for the next market interval, and new bids are 
submitted based on the updated states of the agents. 

2.3.2 VAV Bidding and Clearing 

VAV agents bid a demand curve defined by two points: one that represents the minimum desired cooling 
rate, which is associated with an increased cooling set point and maximum bid price; and one that 
represents the maximum desired cooling rate, which is associated with a decreased cooling set point and 
minimum bid price. To avoid excessive temperature deviations and minimize comfort impacts, minimum 
and maximum cooling set points are bounded by upper and lower limits, effectively setting the maximum 
and minimum cooing demand bid. In addition, cooling delivered to a zone is bounded by the physical 
constraints on airflow. Therefore, minimum and maximum airflow rates configured for the VAV terminal 
box are used to calculate the absolute boundaries for the cooling demand curve submitted by each VAV 
agent. 

Once the market clears and the VAV agents receive the cleared price, each agent responds by adjusting its 
cooling demand to match the cleared price. It does so by finding the point on the cooling demand curve it 
previously bid into the air market that corresponds to the clearing price. Next, it calculates the 
temperature set point that will result in the found cooling demand. High thermostat set points are 
associated with reduced cooling demand, and low thermostat set points are associated with increased 
cooling demand. Therefore, high clearing prices will tend to drive thermostat set points up and low 
clearing prices will have the opposite effect. A description of the demand and temperature set point 
calculations is provided in Section 3.1. 

                                                                                                                                                                           
 
on its own flexibility, thus satisfying double-blind requirements. Our method provides a tighter coupling between 
demand estimated at the zone level, and that bid at the electricity market level, which, in theory, guarantees that the 
quantity cleared at the electricity market level can be achieved at the zone level. The aggregation procedure is 
depicted in Figure 2.5. 
2 In our implementation, air and electricity prices are equivalent; the price of the maximum air demand in the 
aggregate air demand curve is submitted as the price of the maximum electricity demand in the electricity demand 
curve. However, the proposed process allows for these prices to be decoupled. 
3 The air supply curve is effectively a vertical line spanning the minimum and maximum prices bid by the zones. 



 

2.5 

2.4 Hot Water Markets for Heating Operation 

In this section, we extend the market-based control for VAV terminals to heating operation. We first 
describe the market structure for a VAV system with hot water reheat. We then introduce the problem 
encountered when two commodities are introduced, resulting in a decision between operating modes. We 
conclude with set of options for solving this problem, followed by a discussion of potential shortcomings 
of the proposed solutions. 

2.4.1 Market Structure 

The market structure explored in this section is an extension of that depicted in Figure 2.1. In the 
extended structure, shown in Figure 2.2, we have included an additional market and agents that represent 
the heating components of the VAV system. These include the HWMarket, which brokers the exchange 
of hot water; a Boiler agent, which supplies the hot water; a GasMarket agent, from which the Boiler 
agent purchases natural gas; and a GasMeter agent, which sells natural gas and represents the interface to 
the utility. As in the previously discussed structure, there may, in practice, be more than one supplier of 
hot water and more than one purchaser of natural gas, depending on the specific system configuration. 

We note that there is a connection or dependency between the quantities cleared in the hot water, 
electricity, and cool air markets by way of the AHUChiller and VAV agents. In this example, we are only 
considering the case in which the air handling unit (AHU) consumes electricity and does not use hot 
water to pre-heat supply air. This simplifying assumption avoids some of the complexity associated with 
settling markets when they constrain one another’s operation. When such connections exist, the problem 
may not be separable (and may not satisfy other necessary conditions), and an optimal result cannot be 
guaranteed using a market mechanism. The issue of separability and the relationship between 
optimization and markets is discussed briefly in Appendix A.1. 



 

2.6 

 
Figure 2.2. UML object diagram of a commercial building market system in which natural gas and 

electricity are both considered. 

2.4.2 Problem Statement 

The controllers in the VAV terminals regulate the position of the damper and reheat valve to maintain a 
zone temperature according to a set point. There are two commonly used control strategies for the VAV 
controllers: Single Maximum and Dual Maximum control. In Single Maximum control, the logic for the 
local controller of the VAV terminal is as follows, which is also depicted graphically in Figure 2.3: 

• When the zone temperature is larger than the cooling set point of the HVAC zone, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 
(cooling mode), the reheat coil valve is closed. The damper position is adjusted so that the supply air 
flow rate is proportional to the deviation of the zone temperature from 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

• When the zone temperature is between the heating set point, 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 (i.e., the 
dead band), the reheat coil valve is closed while the damper position is adjusted to maintain a 
minimum air flow rate. 

• When the zone temperature is less than 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 (heating mode), the damper position is adjusted to 
keep the air flow rate as a constant value and the position of the reheat coil valve is proportional to 
the deviation of the zone temperature from 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐. 
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Figure 2.3.  Single Maximum control logic for a VAV terminal. 

In Dual Maximum control, the logic for the VAV terminal follows a slightly modified sequence shown in 
Figure 2.4: 

• When the VAV terminal is in cooling mode, or when the zone temperature is in the dead band, the 
control logic for the reheat coil and the damper is the same as that in Single Maximum control. 

• When the VAV terminal is in heating mode, the position of the reheat coil valve is adjusted to be 
proportional to the deviation of the zone temperature from 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐. If the valve of the reheat coil 
is fully open, but the zone temperature is still less than 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐, the damper position is adjusted so 
that the supply air flow rate is proportional to the deviation of the zone temperature from 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐. 

 
Figure 2.4.  Dual Maximum control logic for a VAV terminal. 

We can see that by modulating 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 and 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 for each VAV terminal, we are able to adjust 
their heating/cooling demand. Adjusting the heating/cooling demand can serve the following purposes: 

• Limit the peak electricity or natural gas demand in order to increase the efficiency on the energy 
supply side. At the same time, we may still deliver the total amount of heating or cooling needed by 
the zone served by the VAV terminal.  

• Enable VAV terminals to respond to changing prices for electricity and natural gas. Specifically, 
VAV terminals may be controlled such that additional cooling or heating energy is delivered when 
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prices are low, and less cooling or heating is delivered when prices are high. By responding to the 
changing price, we may reduce the cooling and heating cost and increase the efficiency on the energy 
supply side as well. 

• Reduce the electricity or natural gas demand. By better allocating the cooling and heating energy 
among VAV terminals, we can reduce the total cooling and heating demand. For example, if only one 
HVAC zone (critical zone) is requesting more cooling while other HVAC zones are overcooled, 
instead of increasing the total cooling energy supply, we can assign more cooling energy to the 
critical zone.  

2.4.3 Market-Based Control for VAV Terminal 

Several market-based control strategies for VAV terminals have been proposed in the literature (Hao et al. 
2016; Hubermand and Clearwater 1995). In those strategies, VAV terminals were assumed to be in 
cooling mode. In this section, we propose a market-based control strategy for VAV terminals in 
heating/reheating mode: 

1. Determine the mode, either heating or cooling, into which the VAV terminal will be placed. 

a. Consider the several strategies that can be used to make such a decision: 

• Prediction-based strategy 

A prediction of the HVAC load for the next market interval is generated. If the predicted load 
market is negative (cooling), the VAV terminal will be placed in cooling mode, otherwise, it 
will be placed in heating mode. 

• Budget-based strategy 

Each VAV terminal receives an amount of virtual money, 𝑚𝑚, for bidding. Based on 𝑚𝑚, we 
estimate the corresponding maximum cooling energy �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚 and the maximum heating 
energy �̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑚𝑚𝑒𝑒𝑚𝑚 that we can afford: 

 �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚 =
𝑚𝑚

𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑠𝑠
  (2.1) 

 �̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑚𝑚𝑒𝑒𝑚𝑚 = 𝑚𝑚
𝑝𝑝ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑝𝑝𝑝𝑝𝑒𝑒

  (2.2) 

where 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑠𝑠 and 𝑝𝑝ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑝𝑝𝑝𝑝𝑠𝑠 are the price of the cooling and heating energy at the previous 
market interval. If �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚 ≥ �̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑚𝑚𝑒𝑒𝑚𝑚, the VAV terminal will move to/stay in the cooling 
mode, otherwise, it will be placed in heating mode. The value of 𝑚𝑚 can be determined based 
on the cooling design load of the VAV terminal: 

 𝑚𝑚 ∝ �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑑𝑑𝑠𝑠𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐  (2.3) 

• Cost-based strategy 

Based on a user-defined range of acceptable zone temperature,  [𝑇𝑇𝑐𝑐𝑐𝑐𝑙𝑙,𝑐𝑐𝑐𝑐𝑚𝑚,𝑇𝑇ℎ𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑚𝑚], we can 
determine the maximum cooling and heating energy as follows: 
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 �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚 = 𝑓𝑓𝑧𝑧𝑐𝑐𝑐𝑐𝑠𝑠�𝑇𝑇𝑐𝑐𝑐𝑐𝑙𝑙,𝑐𝑐𝑐𝑐𝑚𝑚�  (2.4) 

 �̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑚𝑚𝑒𝑒𝑚𝑚 = 𝑓𝑓𝑧𝑧𝑐𝑐𝑐𝑐𝑠𝑠(𝑇𝑇ℎ𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑚𝑚)  (2.5) 

If �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑠𝑠 ≤ �̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑚𝑚𝑒𝑒𝑚𝑚𝑝𝑝ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑝𝑝𝑝𝑝𝑠𝑠, the VAV terminal will be placed in cooling 
mode, otherwise, it will be placed in heating mode.  

2. Develop the following functions to connect heating set points to heating energy: 

 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐(�̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐)  (2.6) 

where �̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑐𝑐𝑐𝑐𝑐𝑐 is the heating energy delivered by the supply air. Similarly, we can develop the 
following function to connect the cooling set point to cooling energy: 

 𝑇𝑇𝑠𝑠𝑠𝑠𝑠𝑠,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(�̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  (2.7) 

where �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the cooling energy delivered by the supply air. 

3. Each VAV terminal develops the following function to connect price to cooling energy: 

 �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑑𝑑𝑠𝑠𝑚𝑚𝑒𝑒𝑐𝑐𝑑𝑑(𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐)  
(2.8) 

where 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the price of the desired cooling energy and 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑑𝑑𝑠𝑠𝑚𝑚𝑒𝑒𝑐𝑐𝑑𝑑 is a non-increasing function. 
Then we can determine 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 according to one of two strategies described below. 

• Budget-based strategy 

Using the previously determined budget, 𝑚𝑚, we can define 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑐𝑐𝑐𝑐 as follows: 

 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑐𝑐𝑐𝑐 = 𝑚𝑚−𝑝𝑝ℎ𝑜𝑜𝑒𝑒,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝�̇�𝑄ℎ𝑜𝑜𝑒𝑒,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝,𝑚𝑚𝑒𝑒𝑚𝑚
�̇�𝑄𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚

  (2.9) 

 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚 = 𝑚𝑚−𝑝𝑝ℎ𝑜𝑜𝑒𝑒,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝�̇�𝑄ℎ𝑜𝑜𝑒𝑒,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝,𝑚𝑚𝑚𝑚𝑚𝑚
�̇�𝑄𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐,𝑚𝑚𝑚𝑚𝑚𝑚

  (2.10) 

where 𝑝𝑝ℎ𝑐𝑐𝑠𝑠,𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝 is the price of hot water and �̇�𝑄ℎ𝑐𝑐𝑠𝑠,𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝,𝑚𝑚𝑐𝑐𝑐𝑐 and �̇�𝑄ℎ𝑐𝑐𝑠𝑠,𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝,𝑚𝑚𝑒𝑒𝑚𝑚 are the minimum 
and maximum heating energy available from the hot water, respectively. 

• Historical data-based strategy 

Alternatively, the price may be a function of historical prices: 

 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑐𝑐𝑐𝑐 = �̅�𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑠𝑠 − 𝑘𝑘  (2.11) 

 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚 = �̅�𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑠𝑠 + 𝑘𝑘  (2.12) 
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where 𝑘𝑘 is the user-defined parameter within a given range [𝑘𝑘𝑚𝑚𝑐𝑐𝑐𝑐,𝑘𝑘𝑚𝑚𝑒𝑒𝑚𝑚], and �̅�𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑝𝑝𝑝𝑝𝑠𝑠 is the 
average cooling price over a preceding interval, e.g., 24 hours. 

4. Aggregate the received cooling demand curves by summing the bid quantities as shown in Figure 2.5. 
Note that this is the same process mentioned in Section 2.3.1. 

 
Figure 2.5.  The aggregation of VAV demand curves. 

a. After the aggregated cooling load demand curve is created, we convert it into an electricity 
demand curve (Figure 2.6). In this curve, the maximum and minimum electricity demand is 
determined according to the following functions: 

 𝐸𝐸𝑚𝑚𝑒𝑒𝑚𝑚,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑠𝑠𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑒𝑒,𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑��̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚�  
(2.13) 

 𝐸𝐸𝑚𝑚𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝑓𝑓𝑠𝑠𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑒𝑒,𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑(�̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒𝑐𝑐,𝑚𝑚𝑐𝑐𝑐𝑐)  (2.14) 

where �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚 and �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑒𝑒𝑐𝑐,𝑚𝑚𝑐𝑐𝑐𝑐 are the maximum and minimum aggregated cooling energy, 
respectively. The transform 𝑓𝑓𝑠𝑠𝑐𝑐𝑠𝑠𝑝𝑝𝑐𝑐𝑒𝑒,𝑐𝑐𝑐𝑐𝑒𝑒𝑑𝑑 is specific to the system modeled. 
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Figure 2.6.  The conversion between power and electricity demand curves. 

b. Obtain the price for electricity by 

 𝑝𝑝𝑠𝑠𝑐𝑐𝑠𝑠,𝑚𝑚𝑐𝑐𝑐𝑐 = 𝑝𝑝𝑒𝑒 − 𝜎𝜎  (2.15) 

 𝑝𝑝𝑠𝑠𝑐𝑐𝑠𝑠,𝑚𝑚𝑒𝑒𝑚𝑚 = 𝑝𝑝𝑒𝑒 + 𝜎𝜎  (2.16) 

where 𝑝𝑝𝑒𝑒 is the average electricity price over a past period and 𝜎𝜎 is the standard deviation. Based 
on Equations (2.13), (2.14), (2.15), and (2.16), we may generate a demand curve to be bid into the 
local electricity market. 

5. After the clear price for electricity is obtained, we can find the price of cooling power according to 
the one-to-one relationship between the electricity and cooling power prices. Each VAV terminal can 
determined the cooling power it will use according to its demand curve.  

a. Based on cooling power, we can calculate the zone set point according to Equations (2.6) and 
(2.7). 

b. Finally, based on the cleared cooling power, we can calculate the clearing price for heating 
energy as follows: 

 𝑝𝑝ℎ𝑠𝑠𝑒𝑒𝑠𝑠 = 𝑝𝑝𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐�̇�𝑄𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐,𝑒𝑒𝑜𝑜𝑒𝑒+𝑝𝑝ℎ𝑜𝑜𝑒𝑒,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝�̇�𝑄ℎ𝑜𝑜𝑒𝑒,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝,𝑒𝑒𝑜𝑜𝑒𝑒
�̇�𝑄ℎ𝑒𝑒𝑒𝑒𝑒𝑒,𝑒𝑒𝑜𝑜𝑒𝑒

  (2.17) 

where �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑐𝑐𝑠𝑠 is the cooling energy cleared in the cool air market, �̇�𝑄ℎ𝑐𝑐𝑠𝑠,𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝,𝑠𝑠𝑐𝑐𝑠𝑠 is the heating 
energy cleared in the hot water market, and �̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑠𝑠𝑐𝑐𝑠𝑠 is the sum of net (�̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑐𝑐𝑠𝑠 + �̇�𝑄ℎ𝑐𝑐𝑠𝑠,𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝,𝑠𝑠𝑐𝑐𝑠𝑠) 
energy cleared in the market. The effective heating price, 𝑝𝑝ℎ𝑠𝑠𝑒𝑒𝑠𝑠, is used in subsequent bidding in 
the next market interval. 
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2.4.4 Discussion 

One key parameter in the budget-based strategy is the quantity 𝑚𝑚. We propose to determine 𝑚𝑚 according 
to the cooling design load of the VAV terminal. However, this may potentially cause problems in the real 
implementations. For example, it is possible that �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚 and �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑐𝑐𝑐𝑐 of one VAV terminal (named 
the VAV Terminal 1) are much larger than those of other VAV terminals when all of the terminals are in 
cooling mode. Then 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑐𝑐𝑐𝑐 and 𝑝𝑝𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑒𝑒𝑚𝑚 should be much less than those of other VAV terminals 
according to Equations (2.9) and (2.10). In that case, as shown in Figure 2.7, it is likely that VAV 
Terminal 1 will always be assigned �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑚𝑚𝑐𝑐𝑐𝑐. In the future study, we will explore ways to avoid this 
problem by better selecting 𝑚𝑚.  

 
Figure 2.7.  The problem caused by inappropriately selected 𝒎𝒎. 

In Equation (2.17), we propose a heating price calculation based on the cleared quantities and prices of the 
cool air and hot water markets by way of �̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑠𝑠𝑐𝑐𝑠𝑠. However, this quantity may approach zero, in which 
case the heating price approaches infinity, significantly affecting the bid for heating by the agent in 
subsequent market-clearing intervals. To solve this problem, we may instead define 𝑝𝑝ℎ𝑠𝑠𝑒𝑒𝑠𝑠 as follows: 

 𝑝𝑝ℎ𝑠𝑠𝑒𝑒𝑠𝑠 = �𝑝𝑝𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐�̇�𝑄𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐,𝑒𝑒𝑜𝑜𝑒𝑒�+�𝑝𝑝ℎ𝑜𝑜𝑒𝑒,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝�̇�𝑄ℎ𝑜𝑜𝑒𝑒,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝,𝑒𝑒𝑜𝑜𝑒𝑒�
��̇�𝑄𝑐𝑐𝑜𝑜𝑜𝑜𝑐𝑐,𝑒𝑒𝑜𝑜𝑒𝑒�+��̇�𝑄ℎ𝑜𝑜𝑒𝑒,𝑤𝑤𝑒𝑒𝑒𝑒𝑒𝑒𝑝𝑝,𝑒𝑒𝑜𝑜𝑒𝑒�

  (2.18) 

We note that in either definition, we have not yet performed simulations to test the effect of the effective 
heating price on market behavior. 
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3.0 Thermal and HVAC Component Models 

This section describes the models used by the agents in the transactive system to estimate the quantities 
bid into their respective markets. These models are control-oriented models, the majority of which are 
inverse models, and therefore relatively simple compared to those used in detailed energy simulation. For 
each model, we describe the mathematical formulation and the method by which we tune the models to 
predict the performance of the physical system. 

3.1 Zone Model 

As described earlier, the market-clearing process begins with the bidding of individual zone-level demand 
curves by the VAV agents, which are aggregated by the AHUChiller agent into a system-level demand 
curve. In order to generate such zone-level demand curves for each zone, we use a simple zone model to 
predict the HVAC energy demand based on outdoor dry-bulb temperature and other zone parameters. 
Once the market clears, an analogous model is used to find the new cooling set point temperature. To 
ensure an equitable market clearing and appropriate control response, it is important that these models 
have accurate predictive capabilities. Moreover, as the market system is extended in future work to 
include forward market settlements, the predictive ability of the models must be accurate over long time 
frames, from several hours to ideally an entire day. 

Lumped parameter models have long been used for predicting the performance of a building for 
applications where the building level response that is both sufficiently accurate and computationally 
efficient is of greater interest (Gouda et al. 2002). These models can take a basic lower-order form or 
increase in complexity to a higher-order combination of resistances and capacitances such as the 3R2C or 
the 3R4C models (Fraisse et al. 2002). These models are popular because of the simplicity and adequacy 
they offer in capturing the thermal response of a zone. 

3.1.1 Model Formulation 

The zone model is initially formulated as a linear regression-based approximation of the zone temperature 
at a given time-step as a function of outdoor dry-bulb temperature, zone temperature at the previous time-
step, and HVAC energy (Hao et al. 2016). This initial form of the model is expressed as follows: 

 𝑇𝑇𝑐𝑐𝑠𝑠+1 = 𝑎𝑎1 
𝑐𝑐 𝑇𝑇𝑠𝑠 

𝑐𝑐 + 𝑎𝑎2 
𝑐𝑐 𝑇𝑇𝑐𝑐,𝑠𝑠 

𝑐𝑐 + 𝑎𝑎3 
𝑐𝑐 𝑞𝑞𝑠𝑠+1 

𝑐𝑐 + 𝑎𝑎4 
𝑐𝑐 𝑞𝑞𝑠𝑠 

𝑐𝑐 + 𝑎𝑎5 
𝑐𝑐   

(3.1) 

or by rearranging the terms as follows: 

 𝑞𝑞𝑐𝑐𝑠𝑠+1 = 𝑏𝑏1 
𝑐𝑐 𝑇𝑇𝑠𝑠 

𝑐𝑐 + 𝑏𝑏2 
𝑐𝑐 𝑇𝑇𝑐𝑐,𝑠𝑠 

𝑐𝑐 + 𝑏𝑏3 
𝑐𝑐 𝑇𝑇𝑠𝑠+1 

𝑐𝑐 + 𝑏𝑏4 
𝑐𝑐 𝑞𝑞𝑠𝑠𝑐𝑐 + 𝑏𝑏5 

𝑐𝑐   (3.2) 

where 𝑇𝑇𝑠𝑠+1 
𝑐𝑐 and 𝑞𝑞𝑠𝑠+1 

𝑐𝑐 represent the zone temperature and cooling rate at the next time-step, and 𝑎𝑎4 
𝑐𝑐 𝑞𝑞𝑠𝑠 

𝑐𝑐 +
 𝑎𝑎5 
𝑐𝑐 and 𝑏𝑏4 

𝑐𝑐 𝑞𝑞𝑠𝑠 
𝑐𝑐 + 𝑏𝑏5 

𝑐𝑐 estimate the unobserved external disturbances as measured by the cooling rate at the 
current time, 𝑞𝑞𝑠𝑠 

𝑐𝑐 .  

The model is trained using measured data for a given thermal zone within the building and validated by 
comparing the predicted and measured zone temperatures and cooling rate. Figure 3.1 shows a 
comparison of the measured and predicted zone temperature and cooling rate for a thermal zone within 
the building using data aggregated at 60-minute intervals. Because the model corrects 𝑇𝑇𝑠𝑠 and 𝑞𝑞𝑠𝑠 at each 
time-step, the predicted response matches the measured response very closely.  
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Figure 3.1. Comparison of actual and predicted zone temperature and cooling rate for a sample thermal 

zone within the building. 

The initial zone model is then tested for multi-period prediction by propagating the predicted 𝑇𝑇𝑠𝑠 and 𝑞𝑞𝑠𝑠 
through the next time-step, 𝑡𝑡 + 1. In the absence of a correcting signal, the predicted response for the 
cooling rate (𝑞𝑞) is observed to quickly diverge from the measured response. A step-wise tuning process is 
employed to identify and correct deficiencies identified from the residual plots of the initial model. The 
first deficiency observed is that the model does not capture residual information when the HVAC system 
is unavailable (scheduled off); Figure 3.2 illustrates this clearly. 

 
Figure 3.2.  A residual plot of the predicted cooling rate (q) for the initial model. 

We correct this deficiency by introducing the HVAC system availability as a model parameter and 
modifying the form of the model as follows: 
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 𝑇𝑇𝑐𝑐𝑠𝑠+1 = 𝑎𝑎1 
𝑐𝑐 𝑇𝑇𝑠𝑠𝑐𝑐 + 𝑎𝑎2 

𝑐𝑐 ℎ𝑠𝑠 +  𝑎𝑎3 
𝑐𝑐 𝑇𝑇𝑐𝑐,𝑠𝑠 

𝑐𝑐 + 𝑎𝑎4 
𝑐𝑐 𝑇𝑇𝑠𝑠𝑐𝑐ℎ𝑠𝑠 + 𝑎𝑎5 

𝑐𝑐 𝑞𝑞𝑠𝑠 
𝑐𝑐 ℎ𝑠𝑠 + 𝑎𝑎6 

𝑐𝑐 𝑞𝑞𝑠𝑠+1 
𝑐𝑐 ℎ𝑠𝑠+1 + 𝑎𝑎7 

𝑐𝑐   
(3.3) 

and  

 𝑞𝑞𝑐𝑐𝑠𝑠+1 = 𝑎𝑎1 
𝑐𝑐 𝑇𝑇𝑐𝑐,𝑠𝑠 

𝑐𝑐 + 𝑎𝑎2 
𝑐𝑐 𝑞𝑞𝑠𝑠 

𝑐𝑐 + 𝑎𝑎3 
𝑐𝑐 ℎ𝑠𝑠+1 

𝑐𝑐 + 𝑎𝑎4 
𝑐𝑐 𝑇𝑇𝑠𝑠 

𝑐𝑐𝑥𝑥ℎ𝑠𝑠 + 𝑎𝑎5 
𝑐𝑐 𝑇𝑇𝑠𝑠+1𝑐𝑐 𝑥𝑥ℎ𝑠𝑠+1 + 𝑎𝑎6 

𝑐𝑐   (3.4) 

where ℎ𝑠𝑠  and ℎ𝑠𝑠+1 indicate the HVAC system availability at time-step 𝑡𝑡 and 𝑡𝑡 + 1, and can have a value 
of 0 or 1 based on whether the HVAC system was off or on. The availability is specified as an interactive 
component for the zone temperature (𝑇𝑇) and cooling rate (𝑞𝑞) terms. This modification allows the model to 
capture previously untapped information, thereby improving the residuals of the model when the system 
was unavailable as illustrated in Figure 3.3.  

 
Figure 3.3.  A residual plot of the predicted cooling rate (q) for the revised model. 

The modification also improves the predictive performance of the model compared to the initial case as 
illustrated in Figure 3.4.  
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Figure 3.4. A comparison of the predictive performance of the initial and revised model with the actual 
measured performance for a sample thermal zone within the building. 

3.1.2 Parameter Identification 

The coefficients of the regression models establish the nature of the relationship between the variable 
terms and the response. It is important to distinguish the function of the coefficients of a regression model 
from that of a heat balance model, because the regression coefficients establish the correlation between 
the trend of the associated variable and the trend of the response. By examining each term in isolation and 
assuming that all other variables remain unchanged from one time-step to the next, the sign of each 
coefficient can be determined based on whether the expected change in the response is in the same 
direction as the change in the associated variable (positive coefficient) or opposite in trend (negative 
coefficient). 

When considering the temperature model, we note that the response, i.e., zone temperature at the next 
time-step, is likely to increase as the zone temperature at the current time-step increases, all other 
variables being held constant. Thus, the coefficient associated with the 𝑇𝑇𝑠𝑠 

𝑐𝑐  term, 𝑎𝑎1 
𝑐𝑐 , is expected to be 

positive. We apply the same logic to the other terms leading to an expected negative coefficient for the 
HVAC system availability term, 𝑎𝑎2 

𝑐𝑐 ; a positive coefficient for the outdoor air temperature term, 𝑎𝑎3 
𝑐𝑐 ; a 

positive coefficient for the combined effect of the zone temperature and HVAC system availability at the 
current time-step, 𝑎𝑎4 

𝑐𝑐 ; a positive coefficient for the combined effect of the cooling rate and the HVAC 
system availability at the current time-step, 𝑎𝑎5 

𝑐𝑐 ; and the next time-step, 𝑎𝑎6 
𝑐𝑐 . The constant term, 𝑎𝑎7 

𝑐𝑐 , defines 
the fairly constant internal occupancy-related gains within the zone that are not captured by the remaining 
terms. As the amount of internal gain increases, the zone temperature is expected to increase. Thus, the 
constant term is expected to be positive. 

Assessing the cooling rate model using the same principles, we expect the cooling rate to increase with an 
increase in the outdoor air temperature, all other variables being held constant. However, because the 
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cooling rate is expressed as the rate of heat extraction, the sign associated with it is negative. Thus, the 
cooling rate becomes more negative as the outdoor air temperature increases so a negative coefficient is 
expected to be associated with the outdoor air temperature term,  𝑏𝑏1 

𝑐𝑐 . Using the same logic, a positive 
coefficient, 𝑏𝑏2 

𝑐𝑐 , is expected to be associated with the cooling rate at the current time-step; a negative 
coefficient, 𝑏𝑏3 

𝑐𝑐 , is expected to be associated with the HVAC system availability at the next time-step; a 
negative coefficient, 𝑏𝑏4 

𝑐𝑐 , is expected to be associated with term representing the combined effect of the 
zone temperature and HVAC system availability at the current time-step; and a positive coefficient, 𝑏𝑏5 

𝑐𝑐 , is 
expected to be associated with the term representing the same effect at the next time-step because if the 
zone temperature at the next time-step increases, it must be associated with a less negative or increased 
cooling rate. Similarly, an increase in the internal loads represented by the constant term, 𝑏𝑏6 

𝑐𝑐 , is expected 
to result in an increase in the cooling rate or a more negative cooling rate, thereby resulting in an expected 
negative coefficient. The coefficients 𝑎𝑎1 

𝑐𝑐 …𝑎𝑎7 
𝑐𝑐 and 𝑏𝑏1 

𝑐𝑐 …𝑏𝑏6 
𝑐𝑐 are found through linear regression, where 𝑡𝑡 is 

the current time-step and 𝑡𝑡+1 is the next time-step.  

We have developed a VOLTTRON agent to periodically and automatically perform parameter 
identification for the zone model. As the model and tuning method are revised, this agent will be updated. 
More detail about this agent is provided in the Transactive Control of Commercial Building HVAC 
Systems: VOLTTRON User Guide (Corbin 2016). 

The coefficients obtained from the model indicate a strong dependence of the zone temperature at a given 
time-step on the zone temperature at the previous time-step. While this trend is expected, the coefficients 
associated with the other terms except the HVAC system availability are negligible, indicating a 
persistence issue. As observed in Figure 3.4, the model in its current form is unable to capture the effects 
of thermal capacitance. This will be addressed in future modifications of the model.  

3.1.3 Future Work 

The introduction of lagged temperature and cooling rate as additional model parameters to account for the 
effects of capacitance is currently being investigated. Based on the results of the investigation, a higher-
order resistance-capacitance (RC) model maybe considered for implementation. The potential issue of 
persistence described above is also under investigation.  

Additionally, as seen in Table 3.1, some model coefficients for certain thermal zones are observed to have 
an opposite trend to what is expected based on the principles of thermodynamics. Constraining the sign of 
the coefficients during the regression process alleviates the issues related to the sign of the coefficients 
but the problem of negligible coefficients associated with terms other than the temperature of the previous 
time-step still persists. Additional investigation is required to identify the source of these issues. 

Table 3.1.  Parameters for a sample thermal zone within the building. 

𝑇𝑇𝑐𝑐𝑠𝑠+1 Coefficient Value  𝑞𝑞𝑐𝑐𝑠𝑠+1 Coefficient Value 

𝑎𝑎1 
𝑐𝑐  0.81119  𝑏𝑏1 

𝑐𝑐  -2.563 
𝑎𝑎𝟐𝟐 
𝑐𝑐  1.40796  𝑏𝑏2 

𝑐𝑐  31.52 
𝑎𝑎𝟑𝟑 
𝑐𝑐  0.06018  𝑏𝑏3𝑐𝑐  - 2416 
𝑎𝑎𝟒𝟒 
𝑐𝑐  -0.05369  𝑏𝑏4𝑐𝑐  -0.02428 
𝑎𝑎𝟓𝟓 
𝑐𝑐  0.00074  𝑏𝑏5 

𝑐𝑐  86.31 
𝑎𝑎𝟔𝟔 
𝑐𝑐  0.00068  𝑏𝑏6 

𝑐𝑐  65.82 
𝑎𝑎𝟕𝟕 
𝑐𝑐  3.5580     
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3.2 Air Handler Model 

The air handler model is a simple representation of a typical commercial VAV unit. The purpose of the 
model is to estimate fan power and cooling load given real-time measurements from the BAS. The AHU 
consists of a variable-speed supply fan and chilled water coil; the return fan, which is approximately one-
tenth the size of the supply fan is neglected. Because only cooling operation is considered currently, the 
hot water coil is not modeled. A more detailed representation of the AHU is not necessary for the 
transactive control algorithms; other aspects of an AHU normally considered in simulation, i.e., 
economizer operation, are not modeled. 

3.2.1 Model Formulation 

Supply fan power is estimated using a linear model based on fan laws, which relate volume flow rate and 
pressure rise to electric power consumption. Specifically, fan power, 𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐, is approximated as a function 
of volume flow rate, �̇�𝑣, and static pressure, 𝜌𝜌. This gives rise to the following equation: 

 𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐 = 𝑎𝑎0 + 𝑎𝑎1�̇�𝑣 + 𝑎𝑎2�̇�𝑣2 + 𝑎𝑎3�̇�𝑣3 + 𝑎𝑎4𝜌𝜌 + 𝑎𝑎5𝜌𝜌2  (3.5) 

Cooling coil load, �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, is modeled simply from first principles using the familiar heat transfer equation: 

 �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �̇�𝑚𝑒𝑒𝑐𝑐𝑝𝑝𝐶𝐶𝑝𝑝(𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒 − 𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑)  (3.6) 

 
where  �̇�𝑚𝑒𝑒𝑐𝑐𝑝𝑝 = the mass flow rate of air entering the cooling coil, 
  𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑 = the mixed air temperature, 
  𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒 = the supply air temperatures, and 
  𝐶𝐶𝑝𝑝 = the heat capacity of air1.  

Air mass flow rate of is calculated from the volume flow rate; this and all parameters in the preceding 
equations are available from the BAS. 

3.2.2 Parameter Identification 

Coefficients of the fan power model are found using least-squares regression. Measured fan power, 
volume flow rate, and system static pressure were obtained from the BAS. These data were recorded at 
1-minute intervals over approximately 2 weeks of normal building operation. The data were split into 
training and validation sets.  

We have developed a VOLTTRON agent to periodically and automatically preform parameter 
identification for the fan model. More detail about this agent is provided in the user guide (Corbin 2016). 

3.2.3 Model Validation 

We validate the fan model by comparing power predicted using measured pressure and flow in the 
validation set to measured power over the same time period. Figure 3.5 below shows a comparison 
between measured and predicted power for a single day in the validation data set. Model fit is extremely 

                                                      
1 We assume a fixed value for the heat capacity of dry air, calculated at the nominal supply air temperature. 
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good and has an adjusted R2 value of 0.9966 and mean absolute error of 0.04kW, or 4.4% of average 
power. 

 
Figure 3.5. Comparison of measured and model-predicted fan power during 1 day of the validation data 

set. 

While economizer operation is not modeled explicitly, its operation is reflected in the cooling coil load. 
This allows economizer operation to be considered in the transactive market, even though it is not under 
direct control. 

3.3 Chiller Model 

A simple chiller model estimates the electric demand of the district chilled water plant required to serve 
the cooling load calculated by the AHU. In practice, this model is embedded inside the AHU model. 
While trivially simple, this model provides a mechanism for the AHU to estimate the electric demand 
associated with a given cooling load so that it may be combined with the fan power estimate and bid into 
the electric market. 

3.3.1 Model Formulation 

The chiller model is a single parameter model that relates chilled water load to electric demand. The 
single parameter—coefficient of performance (COP)—can be easily estimated from total chiller plant 
electric demand, 𝑃𝑃𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝, and total cooling load delivered, �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, which is estimated by the AHU model. 
This model takes the following form: 

 𝑃𝑃𝑐𝑐ℎ𝑐𝑐𝑐𝑐𝑐𝑐𝑠𝑠𝑝𝑝  =  𝐶𝐶𝐶𝐶𝑃𝑃 ∗ �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐   
(3.7) 

The decision to adopt such a simplified model was not arbitrary; rather it represents recognition that the 
electric demand required to satisfy the cooling load only needs to be a first-order approximation. In 
practice, chiller plant performance is characterized by a large number of parameters, including outdoor 
temperatures, condenser type, supply and return temperatures, chiller staging, and part-load ratio. 
However, in the context of the transactive market considered here, such a detailed model is not necessary, 
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and adds unnecessary complexity to the demand curve estimation described previously. Our rational is as 
follows: 

• The air handler considered here is just one consumer of the chilled water in the district system, thus 
the impact it has on chiller power consumption changes as a function of the total chiller load. While 
this information could be obtained at the time of electric demand estimation, the actual impact will 
vary with the operation of other chilled water consumers, of which the air handler has no knowledge. 
This dependence on the behavior of other consumers makes the problem inseparable as discussed 
previously. The simplification adopted here, i.e., that the performance of the chiller is independent of 
part-load ratio, allows power to be simply estimated regardless of the actions of other consumers in 
the system. 

• At the building level, the power used by the chiller to satisfy the building’s cooling load is significant 
relative to power used by the AHU fan. Therefore, the higher-order effects introduced by 
environmental conditions are arguably less important than the gross demand of the chiller. At the 
building level, fan electric and chilled water demand are the only quantities over which the market 
has any control. Chiller electric power, while important, is only necessary in the market to estimate 
the impact from a change in chilled water demand; the simple model simply scales and converts the 
units of chilled water demand into electric demand so that it may be bid with the fan. 

3.3.2 Parameter Identification 

Chiller plant COP was simply determined from historical data by dividing total cooling delivered by total 
electric power and averaging over a month of data recorded during the summer. An average value of 5.69 
was found by fitting a linear model to the data; the R2 value of 0.924 shows a linear model to be a good 
approximation. The standard deviation of the COP measures 0.65, or 11% of the average. Figure 3.6 
shows a scatter plot of chiller plant cooling load and chiller plant electric demand during the month of 
July and the linear model fit used to estimate COP. 

 
Figure 3.6. Scatter plot of total chiller plant cooling load versus plant electric demand. The blue linear 

regression line represents the average COP of the system. 
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3.3.3 Model Limitations 

The chiller model is a gross simplification of the factors affecting chiller performance. The model 
described here is, at best, a first-order approximation of the relationship between load and electricity 
demand. Obviously, such a simple model is limited in its ability to accurately predict power consumption 
under changing conditions. As the current project scales to additional buildings, an improved model may 
be required to fully exploit the flexibility of chiller power demand, and critically, the accuracy of power 
predictions. The model may be improved significantly with the introduction of environmental conditions 
and detailed modeling of subcomponents of the plant, e.g., condenser system and pumps. However, the 
introduction of part-load characteristics remains problematic as the transactive market comes to include a 
greater portion of the chiller demand. Future investigations may consider solutions to this problem. 

3.4 Rooftop Unit Models 

A set of rooftop unit models were developed for the future deployment of transactive controls to 
commercial buildings that have one or more zones conditioned by packaged rooftop heat pumps. 
Although the models were not deployed or tested during the project, this section describes systems used 
to develop the models, data gathered, and modeling methods considered and adopted. In future work, 
these models will be deployed across the PNNL campus. 

3.4.1 Introduction 

Rooftop units (RTUs) are among the building systems that can be used to participate in transactive 
mechanisms to reduce demand or absorb extra generation. Heat pumps (HPs) have been more widely used 
in RTUs in the past decade because of their high efficiency and convenience in providing both heating 
and cooling in a single packaged RTU. Although HPs are energy efficient at the site level (i.e., building 
scale), they increase electricity consumption and contribute to electric power peak demand. This is 
because electricity is used to provide heating in addition to cooling. Hence, it is important to control 
RTU-HPs demand to not just conserve energy but also reduce power especially during high demand 
hours. To integrate RTU-HPs in a transactive mechanism and control their demand, it is important to 
estimate their consumption at a given time. Therefore, we require simple but representative control-
oriented RTU-HP models to predict their capacity and power use.  

Two buildings on the PNNL campus are likely candidates for RTU-HP deployment; their rooftop systems 
have been used to inform the development of the models discussed here. Both buildings, referred to in 
this section as BUILDING6 and BUILDING10, are similar in size at approximately 20,000 gross ft2 
(1858.0608 m2), and consist of office spaces, conference rooms, and a kitchen. Each is served by 11 
RTU-HPs.  

3.4.2 BUILDING6 Rooftop Unit Characteristics 

Heat pumps installed in BUILDING6 consist of four different TraneTM models. Here, these heat pumps 
are categorized as models A, B, C, and D. There are two model As, two model Bs, one model C, and five 
model Ds whose cooling and heating specifications are listed in Table 3.2.  
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Table 3.2.  BUILDING6 heating and cooling systems. 

Model 
Net Cooling 

Capacity (kW) 
Cooling 

Power (kW) 
Cooling 

EER 

Nominal 
Supply 

Airflow (m3/h) 

Net Heating 
Capacity 

(kW) 

Heating 
Power 
(kW) 

Heating 
COP 

A 22.0 6.58 11.4 4,080 21.0 5.95 3.50 
B 17.6 6.74 8.90 3,400 17.3 5.76 3.50 
C 23.0 8.40 9.41 3,567 21.4 6.60 3.27 
D 18.6 5.13 12.09 3,400 17.1 4.94 3.50 
EER = energy efficiency ratio 

The BUILDING6 heat pump fan types and specifications are listed in Table 3.3 for both the indoor and 
outdoor fans. BUILDING10’s system characteristics are summarized in Appendix B (Section B.1, 
BUILDING10 System Characteristics). 

Table 3.3.  BUILDING6 indoor and outdoor fan specifications. 

 Outdoor Fan Indoor Fan 
Model Type Airflow (m3/h) Motor Power (kW) Type Motor Power (kW) 
A Propeller 5,800 0.52 FC Centrifugal 0.75 
B Propeller 3,200 0.30 FC Centrifugal 1.10 
C Propeller 4,550 0.25 FC Centrifugal 0.75 
D Propeller 5,138 0.30 FC Centrifugal 0.75 

3.4.3 Model Formulation 

Existing RTU-HP modeling methods can be classified in two broad categories of empirical models (e.g., 
regression-based polynomial curve-fit models) and physics-based models (e.g., gray-box and white-box 
models) (Gayeski et al. 2010). Each modeling approach assumes a different set of inputs and/or training 
data to characterize the performance of the RTU. 

We consider two RTU modeling methods, selected based on the data sources commonly available for 
rooftop heat pumps: a simple nominal performance model based on manufacturer nameplate values; and 
an inverse model developed from either manufacturer’s catalogs/specifications or measured performance 
data. These methods and their corresponding data sources are summarized in Table 3.4. We categorize the 
data source by level of effort and/or expense to obtain. 

Table 3.4.  Data and modeling methods classification. 

Level of Data Source of Data Type of Data Modeling Method Considered 
1 Manufacturer Nominal Nominal 
2 Manufacturer Performance data (as-designed) Inverse 
3 Measured Time-series data (as-installed) Inverse 

Level 1 data are easily gathered from manufacturer’s catalogs and specifications based on a systems’ 
model/nameplate number. A sample of such data is shown in Appendix B (Section B.2, Nameplate 
Equipment Characteristics). Level 2 data may or may not be available on the model and vintage. Level 2 
data consist of capacity and/or power data measured at different ambient temperature, entering wet bulb 
temperature, entering dry-bulb temperature, and airflows. A sample of such data is shown in Appendix B 
(Section B.3, Catalog Performance Data). 
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Field, or as-installed performance data, compose Level 3 data and are less likely to be available, or only 
available with considerable effort or expense. Data points that must be collected to characterize an RTU 
are summarized in Table 3.5. 

Table 3.5.  Data points required to characterize a rooftop heat pump using the inverse method. 

BUILDING10 Typical Value/Unit 
Auxiliary Heat Command 0=inactive, 1=active 
Electric Heat Command 0=inactive, 1=active 
Electric Power Demand kW 
Compressor Command 0=inactive, 1=active 
Cooling Temperature Set Point °F, °C 
Discharge Air Temperature °F, °C 
Heating Cooling Mode 1=COOL, 2=HEAT, 3=AUTO 
Heating Temperature Set Point °F, °C 
Occupancy Mode 0=inactive, 1=active 
Outdoor Air Temperature °F, °C 
Supply Fan Command 0=inactive, 1=active 
Unoccupied Cooling Temperature Set Point °F, °C 
Unoccupied Heating Temperature Set Point °F, °C 
Zone Temperature  °F, °C 

Note that fan power consumption (both indoor and outdoor) is typically included in the total system 
performance data (i.e., total electric power) provided by each manufacturer. This applies to both Level 1 
and Level 2 data sources. 

3.4.3.1 Fan Heat Correction 

Not all manufacturer catalogs report net cooling capacity, requiring that it be calculated by subtracting 
indoor fan motor heat from gross cooling capacity. Fan heat is calculated at nominal airflow and different 
external static pressures. For example, the manufacturer suggests using the following equations to 
calculate fan motor heat for the units in BUILDING6:  

Table 3.6.  Fan motor heat calculation for BUILDING6 RTUs 

Model Fan Motor Heat (kW) 
A (2.829 x Fan bhp + 0.4024) x 0.293 
B 1.144 x Fan kW + 0.132 
C 1.375 x Fan kW 
D (2.7672 x Fan bhp + 0.4705) x 0.293 

 
Additionally, manufacturers may provide fan power (kW or bhp) at different external static pressures and 
airflow rates. To estimate fan motor power, nominal airflow may be used at different external static 
pressures. Table 3.7 lists fan powers calculated at a range of external pressures. 
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Table 3.7.  Fan motor power calculated at different external static pressures. 

 External Static Pressure (Pa) 
100 150 200 250 300 

Model A 0.62 0.74 0.85 0.96 1.05 
Model B 0.76 0.88 0.99 1.12 1.28 
Model C 0.66 0.74 0.81 0.87 0.91 
Model D 0.51 0.61 0.71 0.82 0.93 

This correction may be done once, as in the case of Level 1 data, or for each gross cooling capacity value 
in the manufacturer supplied performance data, as in the case of Level 2 data. In Level 3, net capacity is 
calculated directly from measured supply temperature, return temperature, outdoor air temperature, 
outdoor air fraction and supply flow rate. 

3.4.3.2 Nominal Performance Model 

Model number, nominal electric power, and capacity data were first extracted from manufacturer’s 
catalogs (see tables included in Appendix B). From nominal data, the power consumption, 𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 , and 
system cooling capacity, �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 , can be estimated for cooling operation as shown in Equations (3.8) and 
(3.9) 

 
�̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  �

�̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑚𝑚,     if 𝐶𝐶 = 1
�̇�𝑄𝑣𝑣𝑠𝑠𝑐𝑐𝑠𝑠             if 𝐶𝐶 = 0

 

 

(3.8) 

 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 = �

𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑚𝑚,       if 𝐶𝐶 = 1
𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐                if 𝐶𝐶 = 0  (3.9) 

 
where  �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑚𝑚 = the nominal net cooling capacity of the unit, 
  𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑐𝑐𝑐𝑐𝑚𝑚 = the nominal electric power of the unit during cooling operation, 
  𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐 = the nominal fan power, and  
  𝐶𝐶 = a flag indicating if the compressor is on.  

The equivalent nominal performance models for heating operation are given by: 

 

�̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠 =  �
�̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑐𝑐𝑐𝑐𝑚𝑚,                   if 𝐶𝐶 = 1 and 𝐴𝐴 = 0
�̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑐𝑐𝑐𝑐𝑚𝑚 + �̇�𝑄𝑒𝑒𝑠𝑠𝑚𝑚,     if 𝐶𝐶 = 1 and 𝐴𝐴 = 1
�̇�𝑄𝑣𝑣𝑠𝑠𝑐𝑐𝑠𝑠                            if 𝐶𝐶 = 0 and 𝐴𝐴 = 0

  (3.10) 

 
𝑃𝑃ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 = �

𝑃𝑃ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑐𝑐𝑐𝑐𝑚𝑚,                     if 𝐶𝐶 = 1 and 𝐴𝐴 = 0
𝑃𝑃ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑐𝑐𝑐𝑐𝑚𝑚 + 𝑃𝑃𝑒𝑒𝑠𝑠𝑚𝑚,       if 𝐶𝐶 = 1 and 𝐴𝐴 = 1
𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐                               if 𝐶𝐶 = 0 and 𝐴𝐴 = 0

 
(3.11) 

 
where  �̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑐𝑐𝑐𝑐𝑚𝑚 = the nominal net heating capacity of the unit, 
  �̇�𝑄𝑒𝑒𝑠𝑠𝑚𝑚 = the nominal auxiliary heating coil capacity, 
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  𝑃𝑃ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑐𝑐𝑐𝑐𝑚𝑚 = the nominal electric power of the unit (including the fans) during heating 
operation, 

  𝑃𝑃𝑒𝑒𝑠𝑠𝑚𝑚 = the nominal auxiliary heating coil electric power, and 
  𝐴𝐴 = a flag indicating if the auxiliary heat is on.  

In both models, �̇�𝑄𝑣𝑣𝑠𝑠𝑐𝑐𝑠𝑠 is an estimate of the heat gain or loss due to the outdoor air brought into the zone 
when the compressor is off: 

 �̇�𝑄𝑣𝑣𝑠𝑠𝑐𝑐𝑠𝑠 =  �̇�𝑚𝑒𝑒𝑐𝑐𝑝𝑝𝐶𝐶𝑝𝑝(𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑 − 𝑇𝑇𝑧𝑧𝑐𝑐𝑐𝑐𝑠𝑠)  (3.12) 

 
where  �̇�𝑚𝑒𝑒𝑐𝑐𝑝𝑝 = the nominal air flow provided to the zone, 
  𝐶𝐶𝑝𝑝 = the heat capacity of air, 
  𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒 = the nominal supply air temperature provided by the unit and, 
  𝑇𝑇𝑧𝑧𝑐𝑐𝑐𝑐𝑠𝑠 = the zone dry-bulb temperature.  

Mixed air temperature, 𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑, if not measured directly, requires either a measurement of outdoor air 
flow rate and temperature, or outdoor air fraction and temperature, in order to calculate 𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑. In some 
cases, only supply, return, and outdoor air temperatures are available, in which case a simple mixing 
equation can be used to estimate the outdoor air fraction. 

3.4.3.3 Inverse Model 

A comprehensive literature review was performed to find a model that best matches the data available in 
this project. It was found that there are several equation forms used in the literature to model heat pumps. 
However, most of them are limited to compressor performance and/or rely on the measurements of 
suction and discharge pressure, or evaporation and condensation temperatures, which are associated with 
the refrigerant properties. Stoecker and Jones (1982) presented an empirical bi-cubic curve-fit model of 
compressor power consumption as a function of refrigerant condensing temperature and evaporating 
temperature. Duprez et al. (2007, 2010) used evaporation temperature, condensation temperature, 
saturated vapor pressure and compressor inlet temperature to predict the mass flow rate, compressor 
power use, and heat flow rate. In Air-Conditioning, Heating, Refrigeration Institute (AHRI) Air- 
Conditioning (2004),the compressor power is expressed using a polynomial with variables of suction and 
discharge dew point temperature. Kim and Braun (2012) and Shao et al. (2004) presented similar models 
by integrating the model given in ANSI/AHRI Standard 540 with an additional coefficient, which was 
associated with the variable operation frequency and rated frequency. Aprea and Renno (2009) applied 
the same approach to predict cooling capacity for variable-speed reciprocating compressors. These 
models are not complicated but evaporation temperature and condensation pressure are required as inputs. 
Cheung and Braun (2010) proposed a power model that was associated with the indoor fan speed and 
system load. In their model, the system load was linearly related to the outdoor air temperature. However, 
the power measured in this study was the sum of compressor and outdoor fan power and they say further 
investigation is needed to separate the compressor power from this sum. Gayeski et al. (2010) identified 
empirical, regression-based curve-fit models of heat pump power consumption, cooling capacity, and the 
COP that represent heat pump performance over the full range of test conditions. The curve-fit models 
developed by them are four-variable cubic polynomial functions as a function of outdoor air temperature, 
zone air temperature, compressor speed, and condenser fan speed. Li. et al. (2015) developed a semi-
theoretical compressor power model for single-stage RTUs equipped with a variable-speed compressor 
and variable-speed indoor fan, based on the theoretical analysis and experimental studies. According to 
them, under normal conditions, the compressor power is correlated to the outside air temperature and 
compressor speed with a relative error of ±8%. Li. et al. (2015) also found that compressor speed and 
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condenser inlet air temperature had a strong impact on the compressor power, while evaporator inlet air 
temperature and humidity had a weak impact on compressor power. Perers et al. (2012) developed a very 
simple model to describe the heat pump. In their model, the electric power input and thermal power 
output were correlated with inlet temperature to the heat pump evaporator and inlet temperature to the 
condenser. 

The literature mentioned represents a sample of the models reviewed. Considering data commonly 
available from the manufacturer and/or through building automation and monitoring systems, we propose 
a set of second-order polynomials of the form shown in Equations (3.13) through (3.16). These models are 
based on the model developed by Gayeski et al. (2010) with two independent variables of indoor and 
outdoor air temperatures. This equation form is used to estimate heating and cooling power consumption 
and capacities. 

 
�̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 =  �

𝑎𝑎1𝑇𝑇𝑐𝑐𝑒𝑒2 + 𝑎𝑎2𝑇𝑇𝑐𝑐𝑒𝑒 + 𝑎𝑎3𝑇𝑇𝑧𝑧𝑒𝑒2 + 𝑎𝑎4𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑎𝑎5𝑇𝑇𝑐𝑐𝑒𝑒𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑎𝑎6,     if C=1
�̇�𝑄𝑣𝑣𝑠𝑠𝑐𝑐𝑠𝑠                                                                                       if C=0

  (3.13) 

 
𝑃𝑃𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 =  �

𝑏𝑏1𝑇𝑇𝑐𝑐𝑒𝑒2 + 𝑏𝑏2𝑇𝑇𝑐𝑐𝑒𝑒 + 𝑏𝑏3𝑇𝑇𝑧𝑧𝑒𝑒2 + 𝑏𝑏4𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑏𝑏5𝑇𝑇𝑐𝑐𝑒𝑒𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑏𝑏6,     if C=1
𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐                                                                                       if C=0   

(3.14) 

The equivalent inverse models for heating operation are given by: 

 �̇�𝑄ℎ𝑠𝑠𝑒𝑒𝑠𝑠

=  �
𝑐𝑐1𝑇𝑇𝑐𝑐𝑒𝑒2 + 𝑐𝑐2𝑇𝑇𝑐𝑐𝑒𝑒 + 𝑐𝑐3𝑇𝑇𝑧𝑧𝑒𝑒2 + 𝑐𝑐4𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑐𝑐5𝑇𝑇𝑐𝑐𝑒𝑒𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑐𝑐6,                    if C=1 and 𝐴𝐴 = 0
𝑐𝑐1𝑇𝑇𝑐𝑐𝑒𝑒2 + 𝑐𝑐2𝑇𝑇𝑐𝑐𝑒𝑒 + 𝑐𝑐3𝑇𝑇𝑧𝑧𝑒𝑒2 + 𝑐𝑐4𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑐𝑐5𝑇𝑇𝑐𝑐𝑒𝑒𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑐𝑐6 + �̇�𝑄𝑒𝑒𝑠𝑠𝑚𝑚 ,     if C=1 and 𝐴𝐴 = 1
�̇�𝑄𝑣𝑣𝑠𝑠𝑐𝑐𝑠𝑠                                                                                                    if C=0 and 𝐴𝐴 = 0

  
(3.15) 

 𝑃𝑃ℎ𝑠𝑠𝑒𝑒𝑠𝑠,𝑠𝑠𝑐𝑐𝑠𝑠𝑐𝑐 =

 �
𝑑𝑑1𝑇𝑇𝑐𝑐𝑒𝑒2 + 𝑑𝑑2𝑇𝑇𝑐𝑐𝑒𝑒 + 𝑑𝑑3𝑇𝑇𝑧𝑧𝑒𝑒2 + 𝑑𝑑4𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑑𝑑5𝑇𝑇𝑐𝑐𝑒𝑒𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑑𝑑6,                  if C=1 and 𝐴𝐴 = 0
𝑑𝑑1𝑇𝑇𝑐𝑐𝑒𝑒2 + 𝑑𝑑2𝑇𝑇𝑐𝑐𝑒𝑒 + 𝑑𝑑3𝑇𝑇𝑧𝑧𝑒𝑒2 + 𝑑𝑑4𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑑𝑑5𝑇𝑇𝑐𝑐𝑒𝑒𝑇𝑇𝑧𝑧𝑒𝑒 + 𝑑𝑑6 + 𝑃𝑃𝑒𝑒𝑠𝑠𝑚𝑚,     if C=1 and 𝐴𝐴 = 1
𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐                                                                                                      if C=0 and 𝐴𝐴 = 0

  
(3.16) 

where 𝑇𝑇𝑐𝑐𝑒𝑒 is the outdoor air temperature, 𝑇𝑇𝑧𝑧𝑒𝑒 is the zone temperature, and 𝑎𝑎1 …𝑎𝑎6, 𝑏𝑏1 … 𝑏𝑏6, 𝑐𝑐1 … 𝑐𝑐6, and 
𝑑𝑑1 …𝑑𝑑6 are coefficients found through linear least-squares regression. �̇�𝑄𝑣𝑣𝑠𝑠𝑐𝑐𝑠𝑠, �̇�𝑄𝑒𝑒𝑠𝑠𝑚𝑚, 𝑃𝑃𝑒𝑒𝑠𝑠𝑚𝑚, and 𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐 are 
defined as described in the nominal performance model. 

3.4.4 Parameter Identification Using Catalog Performance 

Regression coefficients 𝑎𝑎1 
𝑐𝑐 …𝑎𝑎6 

𝑐𝑐 ,𝑏𝑏1 
𝑐𝑐 …𝑏𝑏6 

𝑐𝑐 , 𝑐𝑐1 
𝑐𝑐 … 𝑐𝑐6 

𝑐𝑐 and 𝑏𝑏1 
𝑐𝑐 …𝑑𝑑6𝑐𝑐  in the preceding inverse models were 

estimated by fitting the model to the performance data extracted from manufacturer’s catalogs. The fitted 
line is estimated by least-squares regression. The following sections include a summary of coefficients 
found and 𝑅𝑅2 (i.e., the coefficient of determination) results for cooling and heating capacities and power 
consumption using manufacturer’s performance data for BUILDING6. Parameter identification results for 
BUILDING10 are summarized in Appendix B (Section B.4, BUILDING10 Model Coefficients). 
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3.4.4.1 BUILDING6 Cooling Capacity Coefficients 

The cooling capacity coefficients and 𝑅𝑅2 values found for different systems in BUILDING6 are tabulated 
in Table 3.8. A sample of fitted line plots is shown in Figure 3.7. 𝑅𝑅2 values suggest a strong correlation 
between the estimated and actual data indicating the model captures the behavior of heat pumps well. 

Table 3.8.  BUILDING6 cooling capacity coefficients and 𝑹𝑹𝟐𝟐s. 

System 𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 𝑎𝑎4 𝑎𝑎5 𝑎𝑎6 𝑅𝑅2 

Model A -0.0043 -0.0109 0.0089 -0.3891 0.0036 29.1383 1.00 
Model B -0.0193 1.0339 0.0257 -1.5766 0.0084 20.5929 0.89 
Model C -0.0044 -0.3941 0.0353 -2.3167 0.0138 66.2300 0.99 
Model D -0.0017 -0.1956 0.0200 -1.0647 0.0032 38.7117 0.99 

 
Figure 3.7.  Fitted line plots showing estimated and actual cooling capacity for Models B and C. 

3.4.4.2 BUILDING6 Cooling Power Consumption Coefficients 

The manufacturer does not provide cooling power data for these models. In this case, we simply model 
the cooling performance of the unit using nominal characteristics. 

3.4.4.3 BUILDING6 Heating Capacity Coefficients 

Heating capacity coefficients are shown in Table 3.9 and a sample of fitted line plots are illustrated in 
Figure 3.8 showing estimated vs. actual heating capacity. Here, too, 𝑅𝑅2 values suggest a very good model fit.  

Table 3.9.  BUILDING6 heating capacity coefficients and associated 𝑹𝑹𝟐𝟐s. 

System 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 𝑅𝑅2 

Model A 0.0061 0.5543 -0.0002 -0.1014 -0.0027 17.0765 0.99 
Model B 0.0036 0.4488 0.0000 -0.0627 -0.0024 12.9197 0.99 
Model C 0.0034 0.6578 -0.0005 -0.2001 -0.0019 20.0594 0.99 
Model D 0.0024 0.4524 0.0002 -0.1081 -0.0022 15.6753 0.99 
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Figure 3.8.  Fitted line plots showing estimated and actual heating capacity for Models A and B. 

3.4.4.4 BUILDING6 Heating Power Consumption Coefficients 

Heating electric power consumption coefficients are tabulated in Table 3.10 and a sample of fitted line 
plots are shown in Figure 3.9. 

Table 3.10.  BUILDING6 heating electric power consumption coefficients and associated 𝑹𝑹𝟐𝟐s. 

System 𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6 𝑅𝑅2 
Model A 0.0005 0.0197 0.0010 0.0365 0.0005 4.2728 0.98 
Model B 0.0004 0.0326 0.0012 0.0282 0.0002 3.2502 0.99 
Model C 0.0005 0.0571 -0.0004 0.0352 0.0021 5.1339 0.99 
Model D 0.0003 0.0235 0.0011 0.0457 0.0003 3.2271 0.99 

 
Figure 3.9.  Fitted line plots showing estimated and actual heating electric power for Models A and B. 
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4.0 Market Simulation and Cross Validation 

This section describes the simulation of transactive market controls using a detailed building model. 
Simulations are identical to those previously reported by Hao et al. (2016). Here, simulations are 
performed using a new co-simulation capability developed for this project. In this section, we summarize 
the building model used for the study, the co-simulation capabilities developed for this work, and results 
of simulations. We conclude by cross-validating these results with the previous work. 

4.1 Building Model 

The building model used for validation, and simulated in EnergyPlus (EnergyPlus 2016), is a 
representation of a newly constructed, 24,000 ft2, small office building located on the PNNL campus. It is 
the same as that previously investigated by Hao et al. (2016). Only a portion of the building, representing 
approximately 50% of the conditioned floor area, and 90% of its occupants, is considered in this study. 
Heating and cooling are delivered by a VAV system served by a single built-up AHU located on the roof. 
The AHU contains supply and return fans, hot water and chilled water coils, and an outdoor air 
economizer. The AHU serves 17 VAV boxes, each with a hot water reheat coil. A boiler supplies hot 
water to the VAV boxes and AHU coil. Chilled water is supplied by chilled water from a central chiller 
plant.  

The EnergyPlus model was developed from as-built engineering drawings and equipment specifications; 
the latter are summarized in Table 4.1. Operation schedules and set points were obtained from the 
building manager, and performance data collected by the BAS were used to calibrate the model. Fan 
parameters identified for the simple control-oriented models described previously were used to specify 
the AHU fan curve. Lighting and internal loads were estimated from a building walk-through conducted 
immediately after the building became occupied in the spring of 2015. A diagram showing the portion of 
the building simulated in this study is shown in Figure 4.1. 

Table 4.1.  Summary of HVAC equipment characteristics and operating parameters. 

Equipment Characteristics/Parameters 
HVAC System Multi-zone VAV 
Design Supply Airflow 7.400 m3/s 
Design Return Airflow  6.938 m3/s 
Design Outdoor Airflow  0.4625 m3/s 
Supply Fan Motor Nominal Power 14.9 kW 
Zone Terminal Boxes 17 
Airside Economizer Fixed dry-bulb 
Nominal Cooling Capacity 153 kW 
Nominal Heating Capacity 84 kW 
Occupied Hours 06:00-18:00 Mon-Fri 
Occupied Cooling Temperature Set Point 22.8˚C 
Occupied Heating Temperature Set Point 20.0˚C 
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Figure 4.1.  Floor plan of the modeled building. Red outline indicates the area to which transactive 

market control was applied. 

4.2 VOLTTRON Co-Simulation 

Previous simulation studies were performed using the Building Control Virtual Test Bed co-simulation 
software developed by the Lawrence Berkeley National Laboratory (LBNL 2016). This environment 
allowed for fast development and testing of control algorithms against our building model in simulation. 
Results produced by Hao et al. (2016) are a reference for validating the algorithms after their having been 
migrated to VOLTTRON agents. This new co-simulation capability, built upon the VOLTTRON 
platform, allows for testing and validation of the developed algorithms against our building simulation 
model within the target deployment environment. 

4.2.1 EnergyPlus Agent 

To allow VOLTTRON agents to be co-simulated with EnergyPlus, a VOLTTRON agent was developed 
that manages communication between the VOLTTRON message bus and the EnergyPlus simulation 
engine. This agent manages the initialization and execution of the building model simulation and masks 
the details from the other agents running on the platform. In essence, the EnergyPlus agent appears, from 
the perspective of other agents running on the platform, as a physical building. This allows VOLTTRON 
applications to be developed and tested without requiring changes to agents for deployment. Technical 
details of the agent are documented in the companion user guide (Corbin 2016).  

4.2.2 Market and HVAC Agents 

In addition to the EnergyPlus agent that ties the transactive market simulation to the EnergyPlus building 
simulation, agents were developed to represent the markets, thermal zones, and HVAC equipment in the 
transactive market system. The transactive system, depicted in Figure 2.1, consists of 17 VAV agents, a 
single combined AHU/Chiller agent, a meter agent, two market agents, and a director agent.  
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4.2.2.1 VAV Agent 

This agent represents the VAV box and the thermal zone it serves. It is responsible for estimating the 
cooling demand curve for the zone using the zone model described in Section 3.1. The agent submits its 
cooling demand curve to the air market as a buy bid at each market interval, and responds to the cleared 
air price by resetting its thermostat. 

4.2.2.2 AHU/Chiller Agent 

This agent represents the VAV system air handler and chiller plant. It is responsible for supplying cool air 
to the VAV boxes. It estimates the electricity required to power the fan and chiller—using models 
described in Sections 3.2 and 3.3—in order to serve the cooling load bid by the VAV agents. It submits 
the resulting electricity demand curve as a buy bid to the electricity market. 

4.2.2.3 Meter Agent 

The meter agent simply sells electricity to the electricity market. It is configurable to submit sell bids for 
electricity based on a fixed price, dynamic price, or demand limit. 

4.2.2.4 Market Agent  

The market agent collects bids from buyers and sellers, determines the clearing price and quantity of its 
commodity, and broadcasts the cleared values to its buyers and sellers. In this transactive system, there 
are two market agents, each responsible for a separate commodity, either cool air or electricity. 

4.2.2.5 Director Agent 

The director synchronizes the bidding and clearing of the markets. It simply broadcasts a message to the 
markets at each market interval to initiate the bidding and clearing process. 

4.3 Case Studies 

Three case studies explored in the previous work were used to validate the new market application built 
on the VOLTTRON platform (Hao et al. 2016). These cases, described below, represent energy 
conservation, demand-limiting, and demand flexibility applications of transactive control.  
All simulation settings and assumptions from Hao et al. (2016) have been adopted in this study to allow a 
direct comparison of results from the VOLTTRON transactive market implementation to those reported 
in the previous work. Parameters for the simulation are summarized in Table 4.2 and Table 4.3 The 
clearing interval is set to 5 minutes, consistent with the simulation time-step. 
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Table 4.2.  Simulation parameters used in transactive market simulations.(a)1 

Parameter Value 
Upper Cooling Temperature Set Point 23°C 
Lower Cooling Temperature Set Point 19°C 
Baseline Case Cooling Temperature Set Point 21°C 
Upper Price Limit $100/MW 
Lower Price Limit $10/MW 
Occupied Hours 06:00-18:00, Mon-Fri 
Simulation Timeframe August 20-24 
Weather File Pasco, WA (TMY3) 
Simulation Time-Step 5 minutes 
(a) Upper and lower price limits vary in the dynamic price case according to th  

method described in Section 4.4.3 

Table 4.3.  Minimum and maximum zone airflow configuration for VAV agents in simulation 
experiments. 

VAV Terminal Box Minimum Airflow (m3/s) Maximum Airflow (m3/s) 
VAV100 0.1363 0.4544 
VAV102 0.1471 0.4904 
VAV118 0.0557 0.1857 
VAV119 0.01031 0.034388 
VAV120 0.01056 0.03520 
VAV121 0.009593 0.03198 
VAV123A 0.0680 0.2268 
VAV123B 0.06998 0.2333 
VAV127A 0.1936 0.6452 
VAV127B 0.3360 1.120 
VAV129 0.03582 0.1194 
VAV131 0.01461 0.04870 
VAV133 0.03208 0.1069 
VAV136 0.04000 0.1333 
VAV142 0.2222 0.7405 
VAV143 0.04204 0.1401 
VAV150 0.04552 0.1517 

4.3.1 Fixed Price 

This case tests the behavior of the market when the electricity price is fixed, and it provides insight into 
the transactive market operation independent of changes in price from one clearing interval to the next. 
Recall that the ElectricityMeter is responsible for bidding a supply curve into the electricity market. In 
this simulation case, this curve is defined as having a fixed price for all possible demand values. When 
this curve is intersected by the aggregate electricity demand curve, the demand is fixed; notionally, this is 
the demand that must be divided among the zones.  

Results from our investigation in the previous work suggested the flat price case was an effective 
mechanism for encouraging electric energy reduction through conservation and improved balancing of the 
cooling load. Specifically, the higher the electricity price, the more the market control tends to reduce and 
flatten electric demand over the course of each day. 
                                                      
1 Upper and lower price limits vary in the dynamic price case according to the method described in Section 4.3.3 
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Simulations for fixed prices of $55, $60, $65, and $70/MW were repeated using the VOLTTRON-based 
market simulation. Figure 4.2 shows the result of one such simulation in which a fixed price of $65/MW 
was used. 

 
Figure 4.2.  Comparison of $65/MW fixed price simulation to baseline. 

As noted in the previous work, cooling set points (not shown) tend to be depressed in the morning hours 
when cooling loads are low, then gradually rise throughout the day, shifting cooling load to morning 
hours and reducing peak demand during the afternoon. We also observe that zone set point trajectories 
differ from one another, illustrating how the transactive controls balance the needs of the zones 
throughout the day by allowing the zones to negotiate the amount of cooling they need through the 
market.  

4.3.2 Demand Limit 

In this simulation case we impose a demand limit on the total (fan plus chiller) electric demand at each 
market-clearing interval. Here, the curve bid by the ElectricityMeter is defined has having a fixed demand 
value for all price values. When this fixed demand curve is intersected by the aggregate electricity 
demand curve, a clearing price is established. If the aggregate electricity demand curve does not intersect 
the supply curve, the electricity and air markets fail to clear. A failure of the markets to clear signals the 
VAV boxes to set their cooling set points to their nominal baseline value. Effectively, this prevents the 
zones from over-cooling and wasting electricity, and thereby ensures that the markets only clear if the 
demand limit has been exceeded.  

Figure 4.3 shows the results from the demand limit simulation. We observe that peak demand is mostly 
maintained below the imposed demand limit. Small excursions above the demand limit can be seen in 
several instances. Further investigation reveals that these excursions are due to model mismatch. That is, 
the demand cleared in the market, being a function of the demand calculated by our simplified models, 
does not exactly match that simulated by EnergyPlus. The degree to which the aggregate HVAC electric 
demand calculated by the simplified models agrees with the EnergyPlus simulation is encouraging; it 
suggests that (in the context of simulation, at least) the simplified models are adequate for the purpose of 
limiting HVAC demand. 
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Figure 4.3.  Comparison of demand limit simulation to baseline. 

4.3.3 Dynamic Price 

This simulation tests the ability of the market and building to react to price signals that change over time. 
In this case, the ElectricityMeter bids a supply curve similar to that in the fixed price case, except that the 
price varies at each market-clearing interval. The source of the price is a time series of real-time prices 
obtained from the California Independent System Operator (CAISO 2016).  

The general market bidding and clearing process is the same as in previous cases. However, in contrast to 
the previous cases, upper and lower bid prices submitted by the VAVs are calculated as follows: 

 𝑝𝑝ℎ𝑐𝑐𝑐𝑐ℎ = �̅�𝑝24 + 𝜎𝜎24 

 

(4.1) 

 𝑝𝑝𝑐𝑐𝑐𝑐𝑙𝑙 = �̅�𝑝24 − 𝜎𝜎24 
 (4.2) 

where  𝑝𝑝ℎ𝑐𝑐𝑐𝑐ℎ = the price associated with the maximum cooling demand calculated by the zone, 
  𝑝𝑝𝑐𝑐𝑐𝑐𝑙𝑙 = the price associated with the minimum cooling demand calculated by the zone, 
  �̅�𝑝24 = the average price over the preceding 24 hours, and 

  𝜎𝜎24 = the standard deviation of price over the preceding 24 hours.  

These points define the curve bid by zone agents into the air market. This bidding strategy is consistent 
with that implemented by Hao et al. (2016). The strategy allows the zone to adjust bids over time as 
prices fluctuate, and it prevents the situation in which zones are continually being controlled to upper set 
point limits, as would happen during a week of high prices. 

Simulated electricity demand from the dynamic price case is compared to the baseline in Figure 4.4. High 
prices tend to drive thermostat set points up, and therefore cooling demand down, as the thermostats react. 
Low prices have the opposite effect. It is important to observe that dynamic prices can create new demand 
peaks. With the exception of the startup peaks in the morning, this can be seen in each daily demand 
profile. Also worth noting are the large increases in demand on days four and five. These excessive 
increases in demand, associated with aggressive cooling, are the result of the 24-hour averaging in the 
bidding logic. Essentially, electricity appears to be very inexpensive on these days compared to the 
previous days. This is especially true on the fifth day as the price drops to near zero. 
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Figure 4.4.  Comparison of dynamic price simulation to baseline. 

These results highlight an important finding regarding dynamic price response: dynamic pricing may 
result in increased demand during peak demand times if pricing signals are not well aligned with the peak 
cooling loads.2 

4.3.4 Summary and Discussion of Results 

Table 4.4 summarizes the impact from the three incentive signals on three metrics of interest: building 
peak demand, total energy consumption, and zone temperature deviation. Reduction in peak load is 
calculated as a percentage of baseline peak load measured in the baseline for the same day. Total cooling 
energy consumption is defined as the percentage change from the baseline over the entire 5-day 
simulation. Finally, temperature deviation is measured by calculating the average temperature difference 
between the case and the baseline. 

The fixed price case suggests that both energy savings and—perhaps more interestingly—peak load 
reduction may result. The fixed price tends to level demand compared to the baseline, shifting demand to 
the morning hours. This tends to precool the zones, while allowing a reduction in demand during the 
baseline afternoon peak. This is observed in the temperature profiles in Figure 4.2. This case provides 
some justification for market-based control without an external signal, because savings in both total 
electricity use and demand may be realized. 

In the demand-limiting case, we see that the market is able to attenuate the peak demand. While demand 
cleared in the market remains at or below the demand limit, a few excursions exist due to model 
mismatch. We observe that the transactive market is able to reduce peak demand and save energy by 
raising zone temperatures by only a small amount on average. A number of factors determine the peak 
demand, which may be naturally much lower or higher on any given day. Therefore, the selection of an 
appropriate limit is important.3 Prediction of daily demand profiles is an area of ongoing work.  

                                                      
2 Although not the focus of this report, the implications for large-scale deployments are important. When groups of 
buildings, e.g., in a campus deployment, are subjected to the same signal, peak demand may be increased, stressing 
campus infrastructure. In this example, the price is given, resulting in an open feedback loop; the feedback loop 
must be closed so that prices adjust in response to high demand bids. 
3 When considering that demand charges are typically based on the peak 15 or 30 minutes in a given calendar 
month, avoidance of a few days or hours of peak demand are all that is necessary to avoid these charges. A simple 
heuristic for the demand limit would be: multiply the peak demand measured in the trailing month by a scaling 
factor less than one, e.g., 0.9. 
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Dynamic prices drive significant changes in both demand and temperature set points. Zone temperatures 
are generally reduced on average, and both energy consumption and peak demand increase during most 
days. Changes in demand are strongly tied to price. As noted previously, the behavior on days four and 
five is a side effect of the adaptive bidding strategy in which prices appear to be lower relative to the 
trailing average, thus causing the VAVs to lower set points and consume more cooling energy. This 
behavior has been seen in previous simulation studies involving price responsive residential thermostats 
(Widergren et al. 2014), and underscores the complex interactions between bidding strategy and system 
behavior.  

Table 4.4.  Results of transactive market simulation cases. 

 Peak Load (%) Energy 
(%) 

Temperature 
(°C) Case Mean Min Max 

Fixed Price $55 5.6 -0.6 11.4 4.7 -0.07 
 $60 1.1 -4.2 6.9 1.0 0.30 
 $65 -4.2 -9.3 1.4 -3.1 0.61 
 $70 -8.5 -12.3 -5.1 -7.1 0.85 
Demand Limit  -6.2 -6.3 -6.1 -1.5 0.17 
Dynamic Price  5.8 -4.2 14.2 3.1 -0.03 

Results from these simulations have been compared with those reported by Hao et al. (2016) and found to 
be identical for each of the 5-minute iterations of the building simulation and market. Values analyzed for 
differences include zone temperature, building HVAC electricity demand, market-clearing quantity, and 
price. This cross validation confirms that the VOLTTRON-based market performs identically to the 
previous version. 
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5.0 Physical Experiments 

In this section we describe testing of transactive controls on a small commercial building located on the 
PNNL campus. The building used for these experiments is the same as that described in Section 4.1. We 
begin with an overview of the experiments performed, then summarize the deployment and integration 
process, follow with a description of the analysis methodology we have adopted, and then present the 
results of the experiments. Challenges encountered and next steps conclude this section.  

5.1 Experiment Description 

Physical experiments are modeled after the simulations described in Section 4.0. Experimentation began 
first with flat price and progressed to demand limiting experiments. A fully dynamic price experiment 
was not performed for reasons discussed in Section 5.2.3. A summary of the experiments is provided in 
Table 5.1. 

Table 5.1.  Summary of experiments performed on the physical testbed. 

Date Start Time Stop Time Experiment Notes 
1-Jun-2016 08:00 12:00 Flat Price Dry run. Did not control building. Observed 

significant fan power oscillations. $65/MW flat 
price. 

8-Jun-2016 14:00 17:00 Flat Price First test. Observed data latency. Flat price of 
$65/MW flat price. 

16-Jun-2016 07:00 17:00 Flat Price Observed BAS truncating set points. $75/MW 
flat price. 

29-Jun-2016 07:00 17:00 Flat Price Confirmed truncation was removed, but still 
observed data latency. $75/MW flat price. 

14-Jul-2016 07:00 17:00 Demand Limit Lost connection to building at 11:30. 10 MW 
demand limit. 

21-Jul-2016 07:00 17:00 Demand Limit No data from AHU until 10:30. 10 MW 
demand limit. 

28-Jul-2016 07:00 17:00 Demand Limit Observed strange bidding behavior, traced back 
to zone model coefficients. 9.5 MW demand 
limit. 

11-Aug-2016 07:00 17:00 Flat Price Experiment terminated due to configuration 
error. 

16-Aug-2016 05:30 NA Flat Price Experiment interrupted by operator overrides 
around noon. Experiment terminated. $65/MW 
flat price. 

17-Aug-2016 06:00 NA Flat Price Operator did not release overrides from 
previous day. Experiment terminated. $65/MW 
flat price 

18-Aug-2016 06:00 16:00 Flat Price High temperature complaints resulted in early 
termination. $65/MW flat price. 

25-Aug-2016 14:30 16:00 Demand Limit Platform install problems. 10 MW demand 
limit.  

31-Aug-2016 06:00 18:00 Demand Limit 10 MW demand limit. 
1-Sep-2016 06:00 18:00 Flat Price $65/MW flat price. 
2-Sep-2016 06:00 18:00 Demand Limit 6.5 MW demand limit. 
8-Sep-2016 06:00 18:00 Flat Price $77.5/MW flat price. 
13-Sep-2016 12:30 18:00 Flat Price $65/MW flat price. 
14-Sep-2016 06:00 18:00 Flat price $65/MW flat price. 
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5.2 Deployment and Integration 

The BAS of the physical testbed consists of Alerton (2016) field controllers networked through an 
Alerton Ascent Control Module (ACM). The system is managed via a Johnson Controls Metasys Network 
Automation Engine (NAE) using the Metasys graphical user interface (Johnson Controls 2016).  

Software agents composing the market-based control system were deployed to a VOLTTRON instance 
running on an Intel NUC mini PC (Intel 2016). This device was physically located on the testbed 
premises and connected to a subnet of the physical building’s Internet Protocol (IP) network reserved for 
the BAS. The device was configured to monitor points (see Table 5.5 and Table 5.6 in Section 5.2.2) 
through the Metasys frontend over the BACnet (Building Automation and Control Network) IP. The 
device was later reconfigured to communicate directly with the field controllers through the ACM after 
initial testing revealed delays in updates from the field controllers. This issue is discussed in more detail 
in Section 5.2.3 

Heating and cooling set points were originally controlled through the Metasys front end through a 
combination of seven points for each VAV: a single base set point, an occupied heating offset, an 
occupied cooling offset, a standby heating offset, a standby cooling offset, an unoccupied heating set 
point, and an unoccupied cooling set point. Our initial integration with Metasys allowed only the base set 
point and occupied offsets to be modified by VOLTTRON. To allow control during standby and 
unoccupied times, we subsequently configured two virtual points in the ACM representing the effective 
heating and cooling set points and modified the VOLTTRON configuration to write to these points 
instead. Similarly, the Metasys frontend was reconfigured to write to the effective set points. 

Points in the ACM use a BACnet priority array. During experiments, VOLTTRON would write to the 
point at a priority of 9. This allowed the building operator to use a standard override (priority 8) to 
selectively override set points during experiments. Although planned, a global kill-switch to revert all set 
point values to their original state at the loss of heart beat from the VOLTTRON instance or operator 
command was not implemented.  

5.2.1 Model Tuning 

Fan, chiller, and zone thermal models were tuned using the methods described in Sections 3.1.2, 3.2.2, 
and 3.3.2. Training data were collected from the BAS over the month of July. Zone models were 
periodically re-tuned every month1. The identified model parameters are listed in Table 5.2, Table 5.3 
and Table 5.4. 

Table 5.2.  Chiller model parameter for physical experiments. 

Parameter Value 
Coefficient of Performance 5.69 

 

  

                                                      
1 Small variations in zone model parameters could be observed from one tuning to the next. While the impact of 
changing parameters is not the focus of this particular work, this observation suggests that ongoing automated tuning 
may be necessary to keep models up to date. At the very least, zone models may need to be re-tuned seasonally. 
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Table 5.3.  Fan model parameters for physical experiments. 

Coefficient Value 
a0 5.071e-3 
a1 2.605e-4 
a2 8.062e-8 
a3 -2.841e-12 
a4 7.858e-1 
a5 4.382e-1 

Table 5.4.  Example of zone model parameters for a single zone used in physical experiments. 

Model Coefficient Value 

Temperature 

c0 1.77e-01 
c1 9.88e-01 
c2 5.50e-03 
c3 1.87e-04 
c4 -1.07e-04 

Cooling Demand 

x0 -1.66e+01 
x1 -5.16e+01 
x2 -2.58e-01 
x3 5.25e+01 
x4 9.90e-01 

5.2.2 Agent Configuration 

Each agent is configured to receive measured real-time values from the BAS. These values set the current 
states of the models so that model calculations—and thus market bids—reflect current conditions. Points 
supplied to the AHUChiller and VAV agents are summarized in Table 5.5 and Table 5.6, respectively. 
Full details regarding agent configuration for all agents in the market are provided in the implementation 
guide (Corbin 2016). 

Table 5.5.  Input points configured for the AHUChiller agent. 

Point Model Parameter Units 
AHU Discharge Air Temperature 𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒  °F 
AHU Return Air Temperature 𝑇𝑇𝑝𝑝𝑠𝑠𝑠𝑠𝑠𝑠𝑝𝑝𝑐𝑐 °F 
AHU Mixed Air Temperature 𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑 °F 
AHU Discharge Air Flow �̇�𝑚𝑒𝑒𝑐𝑐𝑝𝑝  ft3/min 
Duct Static Pressure 𝜌𝜌 inH20 

Table 5.6.  Input points configured for each VAV agent. 

Point Model Parameter Units 
AHU Discharge Air Temperature 𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒  °F 
VAV Discharge Air Temperature 𝑇𝑇𝑠𝑠𝑒𝑒 °F 
Zone Temperature 𝑇𝑇𝑧𝑧𝑒𝑒 °F 
Outdoor Temperature 𝑇𝑇𝑐𝑐𝑒𝑒 °F 
VAV Discharge Air Flow �̇�𝑚𝑠𝑠𝑒𝑒 ft3/min 
Zone Occupancy  [0|1] 
Standby Status  [0|1] 
AHU Occupancy  [0|1] 
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Zone occupancy, standby status, and AHU occupancy points are binary flags that alter the behavior of the 
VAV agent. When zone occupancy is 1, the desired cooling set points used to calculate minimum and 
maximum desired cooling demand are constrained to a narrow range in order to minimize impacts on 
occupant comfort. An occupancy sensor in each zone determines whether the flag is 1 or 0. When standby 
status is 1 this range is widened. Standby mode is entered immediately after zone occupancy is no longer 
detected and the flag has a value of 1 for the following 15 minutes, at which time it changes to 0. When 
both zone occupancy and standby status flags are 0, a wider unoccupied set point range is used. The AHU 
occupancy flag indicates that the system is off, in which case the VAV agent does not bid. Temperature 
limits for the three occupancy states are summarized in Table 5.7.1 

Table 5.7.  Temperature limits for VAV agents. 

Parameter Value 
Occupied Cooling Temperature Set Point Upper Limit 23.89°C 
Occupied Cooling Temperature Set Point Lower Limit 20.00°C 
Standby Cooling Temperature Set Point Upper Limit 25.56°C 
Standby Cooling Temperature Set Point Lower Limit 20.00°C 
Unoccupied Cooling Temperature Set Point Upper Limit 26.67°C 
Unoccupied Cooling Temperature Set Point Lower Limit 19.44°C 

VAV agents control the heating and cooling set points in occupied, standby, and unoccupied modes 
strictly within these limits. Effective heating and cooling set points controlled by the VAV agents are 
listed in Table 5.8. 

Table 5.8.  Control points configured for each VAV agent. 

Point Units 
Effective Cooling Set Point °F 
Effective Heating Set Point °F 

Recall that VAV agents bid their minimum and maximum desired cooling demand, corresponding to a 
maximum and minimum temperature deviation. Minimum and maximum cooling demand is bounded by 
the minimum and maximum airflow configured for a VAV; values for each VAV are listed in Table 5.9. 

 

  

                                                      
1 These values are typical for the majority of the zones. In fact, some zones have slightly different limits based on 
occupant preference. 
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Table 5.9.  Minimum and maximum zone airflow configuration for VAV agents in physical experiments. 

VAV Terminal Box Minimum Airflow (m3/s) Maximum Airflow (m3/s) 
VAV100 0.6359 1.386 
VAV102 0.3469 0.6938 
VAV118 0.1156 0.4625 
VAV119 0.02891 0.05781 
VAV120 0.02891 0.05781 
VAV121 0.05781 0.1734 
VAV123A 0.3469 1.388 
VAV123B 0.6938 1.388 
VAV127A 0.5781 1.156 
VAV127B 0.5781 1.156 
VAV129 0.06938 0.1388 
VAV131 0.02313 0.04625 
VAV133 0.1301 0.2602 
VAV136 0.04336 0.1445 
VAV142 0.1156 0.5781 
VAV143 0.04336 0.1445 
VAV150 0.07516 0.2023 

5.2.3 Challenges and Resolution 

Initial data analysis revealed delays in data collected by the VOLTTRON platform from the BAS. 
Although points in the BAS were polled every minute, values would not change for up to 15 minutes. 
Interestingly, different points on the same device, e.g., discharge air flow and discharge air temperature at 
the VAV, would be delayed by different amounts of time. We confirmed that change-of-value and update 
interval logic was not the cause; points would stay stagnant for several minutes, then jump by several 
degrees (or hundreds of cubic feet per minute), remain stagnant for a different interval, then change by 
fractions of the previous change. A test was performed in which VOLTTRON was configured to poll the 
field controllers directly. In this test, the previously observed delays were not present, indicating that the 
interaction between the ACM and NAE were likely the cause. Further root cause analysis was not 
performed because of time and budget constraints. 

The pre-existing BAS set point logic, which used seven points for each VAV, severely limited initial 
testing. This logic used a single set point to establish a baseline, then used offsets depending on 
occupancy status. For example, a base set point of 72°F was common for many of the VAVs. To this, a 
2°F offset was added to establish the cooling set point of 74°F, and a separate 2°F offset was subtracted to 
establish the heating set point of 70°F. During standby, i.e., after 15 minutes of no occupancy sensor 
readings during normal operating hours, an additional 4°F were added to the cooling set point to obtain 
78°F, and 4°F was subtracted from the heating set point to obtain 66°F. During times when the building 
was scheduled to be unoccupied, i.e., between 18:00 and 6:00, a separate set of heating and cooling set 
points were used, e.g., 65°F and 80°F. All of this logic existed in the BAS. To greatly simplify the logic 
of the market-based controllers, the BAS was modified to write the result of this logic, i.e., the effective 
heating and cooling set points, to a virtual point, which was then used by the VAV for control. This 
allowed us to then override these effective set points regardless of operating mode, eliminating the need 
to replicate the offset logic in the market-based controllers.  

Unfortunately, the first implementation of the new BAS effective set points logic truncated set point 
values. This limited our control to whole-value increments. For example, if a VAV reported a zone 
temperature of 72.5°F, and our VAV agent calculated a new cooling set point of 72.9°F, the BAS would 
truncate the effective cooling set point to 72°F, resulting in additional cooling, instead of the intended 
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decrease in cooling. This issue was resolved, but not until after analyzing data from a previous 
experiment. 

Once measurement delays were resolved, we observed data measurement problems previously masked by 
the delays. Several VAV sensors exhibited sporadic and erroneous readings. For example, one VAV 
(Zone 142) reported airflows that would oscillate every minute between zero and a value in the normal 
range of 100 to 300 CFM for the VAV. Another VAV (Zone 133) reported zone temperature oscillations 
of 2–4°F every minute. These errors had not been corrected by the time of testing, which required that we 
remove these zones from future experiments.  

An analysis of zone minimum airflows indicated that many zones were overcooled prior to our control 
experiments. Conversations with building operators supported the finding. Operators mentioned that the 
boiler and hot water reheat system were active during peak cooling season in the previous summer. 
Although some adjustments had been made by the building operator to minimize reheat (by disabling the 
boiler), minimum airflow set points still remained at 50% of the cooling design maximum for many 
zones, leading to overcooled zones at minimum airflow. Although it is difficult for us to quantify the 
impact of these settings on our experiments, we believe that the high minimum airflow set points severely 
restricted subsequent tests. 

Significant oscillations in AHU fan power were observed during initial tests. The largest, on the order of 
2 kW or about 50% of peak, would consistently appear at regular 45-minute intervals. Further 
investigation revealed that several zones were operating at 100% of their configured cooling airflow 
values, triggering static pressure reset logic. This logic would gradually increase static pressure up to a 
pre-defined maximum, or until no more than one VAV reported discharge airflow of 100% of the 
configured maximum. At this point, the logic would gradually decrease static pressure down to a pre-
defined minimum until no more than one VAV reported airflow at the configured minimum. Only later 
did we discover that the building operator had configured one zone’s minimum airflow to be the same as 
its maximum, forcing the building to constantly cycle between minimum and maximum static pressure set 
points. The VAV in question was reconfigured to have a lower minimum air flow set point, but 
oscillations were not eliminated entirely, because this condition does occur naturally. Further retuning is 
required to eliminate the oscillations entirely. 

Finally, we note that well-documented software release and change control processes are critical to 
ensuring successful testing. Several experiments were negatively affected or canceled because of updates 
to the underlying platform. Problems introduced by these changes included data missing from the central 
data store, which prevented analysis of experiment results; loss of measurements from devices during 
experiments, which resulted in poor or no control; changes to core platform functionality that resulted 
run-time errors and prevented agent execution during experiments. 

5.3 Analysis Method 

Measuring the impact of our market-based controls during physical experiments is fundamentally more 
difficult than doing so in simulation. This is because a number of factors—including weather conditions 
and occupant behavior that change from moment to moment and are beyond our ability to control—
determine the energy use of a building. Researchers in this field have used a number of techniques to 
address this problem. In essence, these techniques attempt to predict the energy consumption of a building 
under a given set of conditions using a model trained with historical data. This is analogous to predicting 
the energy consumption for days identical to those on which an experiment was performed, as if it had not 
been performed. In this way, differences between days can be controlled for, allowing differences to be 
correctly attributed to the experiment.   
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In this section we describe two simple approaches for evaluating the performance of the market-based 
controls during the physical tests. These are: 

• Method 1 – a simple, naïve approach that compares experimental results from performance measured 
during a similar “baseline” day. 

• Method 2 – a statistical approach that attempts to model building performance based on a set of 
relevant predictors selected by their association with the underlying physical processes that determine 
building energy use.  

Regardless of which method we apply, the first step in our analysis requires us to collect relevant data 
from the HVAC system and pre-process the data to remove erroneous reads. Data from the BAS are 
collected continuously at 1-minute intervals and are available from a historical database. Records date to 
early 2016 when VOLTTRON data trending was installed. Data exist for both experiment and non-
experiment days.  

The collected data include both system-level data (such as AHU supply air flow rate, supply and return air 
temperature, outdoor air temperature, etc.) and zone-level data (such as supply and return air temperature 
of each zone). For the proposed method, only system-level data are used, because the objective is to 
evaluate the whole HVAC system, instead of the interactions between zones. Specifically, the data points 
shown in Table 5.10 are used in this analysis. 

Table 5.10.  Data points required for analysis of physical tests. 

Point Analysis Method 
Supply fan power Method 1 & 2  
Chilled water flow rate Method 1 & 2 
Cooling coil entering water temperature Method 1 & 2 
Cooling coil exiting water temperature Method 1 & 2 
Outdoor air temperature Method 1 & 2 
Mixed air temperature Method 1 & 2 
Return air temperature Method 2 
Supply air flow rate Method 2 
Duct static pressure Method 2 
Outdoor air flow rate Method 2 

5.3.1 Method 1 

A simple method for measuring performance is to directly compare results from an experiment day to a 
non-experiment, i.e., baseline, day. Because building operation is a function of weather (among other 
factors), care must be taken when selecting the baseline. Specifically, the baseline should match the 
experiment day in temperature profile, solar insolation, humidity, and wind. Additionally, occupancy, 
operating schedules, and internal loads should match as closely as possible to control for their effects on 
building performance. Finding a baseline day that matches an experiment day can be challenging, and 
sometimes impossible, especially if all relevant factors are not readily available or measured. 

As an example, we have selected the June 29 experiment to illustrate the method. This day is well 
matched in terms of outdoor air temperature to the previous day, June 28. This can be seen in the lower 
panel of Figure 5.1. A comparison of solar insolation and wind is not possible due to a lack of site-
measured data. Operation schedules are similar for these days. A survey of occupancy was not performed; 
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we assume that the occupants and their behavior do not vary appreciably between these 2 days. A similar 
assumption is made regarding internal gains. 

Of interest to our analysis are the fan and chiller electric power. Fan power can be measured directly from 
the BAS. To obtain the chiller power estimate, we first calculate cooling coil load from the measured 
cooling coil water flow rate, �̇�𝑚𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝, the heat capacity of water, 𝐶𝐶𝑝𝑝, and the cooling coil entering and 
exiting water temperatures, 𝑇𝑇𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝,𝑐𝑐𝑐𝑐 and 𝑇𝑇𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝,𝑐𝑐𝑠𝑠𝑠𝑠, respectively: 

 �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = �̇�𝑚𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝𝐶𝐶𝑝𝑝(𝑇𝑇𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝,𝑐𝑐𝑐𝑐 − 𝑇𝑇𝑙𝑙𝑒𝑒𝑠𝑠𝑠𝑠𝑝𝑝,𝑐𝑐𝑠𝑠𝑠𝑠) (5.1) 

From the cooling coil load, we can simply estimate chiller power by dividing by the nominal chiller COP, 
or 5.69, as found during parameter identification in Section 3.3.2. 

In general, the experiment on June 29 results in a flatter chiller and fan power profile. When compared to 
the June 28 series, the June 29 series shows increased demand in the morning hours, and decreased 
demand in the afternoon hours. This trend is consistent with the simulation results, even if the absolute 
shape is very different. 

Of particular note are oscillations observed in both curves starting at approximately 09:30. These 
oscillations were found to be the result of static pressure reset logic in the BAS. This logic is triggered 
when any VAV terminal box damper is 100% open (resulting in a static pressure set point increase), or 
when none of the dampers are at their minimum (resulting in a static pressure set point decrease). While 
the market-based control sees and responds to these changes in airflow and static pressure, it has no direct 
control over the latter. Specific logic to avoid this condition is an interesting future area of work. 

Additionally, a dip in chiller power on June 29 can be seen at approximately 14:00, which is followed by 
a significant spike. Further analysis reveals that this is the result of a rapid change in chilled water supply 
temperature to the AHU cooling coil. Unfortunately, the cause for this dip and spike is unknown and we 
have no way to determine whether this was a side effect of our experiment. 
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Figure 5.1.  Direct comparison of chiller power, fan power, and outdoor air temperature for similar days. 

To quantify the performance of the market-based control, we calculate two metrics from the measured fan 
power, calculated chiller power, and their sum (total). These metrics are shown in Table 5.11. In this 
table, “energy” is defined as the difference in total electric energy consumed between the experiment and 
baseline, and “demand” is the difference in peak demand measured between the experiment and baseline, 
where peak demand is defined as the maximum demand in a 30-minute rolling average of demand. The 
definition of peak demand is consistent with that defined by PNNL electric tariffs. Percentage values are 
calculated relative to the baseline day. 

Table 5.11.  Difference in energy and demand between June 28 and June 29. 

Experiment Date Series Energy (kWh) Energy (%) Demand (kW) Demand (%) 

June 29 
Fan 0.29 0.18% -0.09 -1.90% 
Chiller 0.25 0.05% 0.07 0.70% 
Total 0.54 0.08% -0.25 -1.76% 

Metrics indicate a net increase in electricity consumption and a higher chiller peak demand during the 
experiment. Increased total consumption is insignificant at 0.09% of the baseline. Regarding demand, this 
increase can be attributed to the chiller spike that occurs at 14:30, and because there is no way to tell if 
this is a result of the experiment, it is hard to determine if this effect is real or simply coincidental. We 
note that at this time, a significant change in chilled water supply temperature (to the building) can be 
observed, suggesting that other causes may be implicated. Recall that the building is served by a central 
plant, which serves several other buildings, each significantly larger than the one studied here. This 
highlights a shortcoming of this analysis method: chiller and fan demand can be influenced by factors 
outside of our control, resulting in the observed increase in chiller power. In Method 2, these effects are, 
in theory, better controlled. 
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5.3.2 Method 2 

In this method, we apply a simple machine-learning technique to predict building energy use in place of a 
comparable baseline. Because we cannot simply “replay” an experiment day as we can in simulation, this 
method allows us to predict building energy use as if the experiment had not been performed. In other 
words, this method allows us to predict the counterfactual.  

The advantage of this method is that we do not need to carefully select a comparison day; the statistical 
model automatically accounts for changes in outdoor temperature, for example. It also controls for 
changes in performance outside of our control, i.e., exogenous effects that may or may not be 
measureable. This allows us to isolate the impact of our market-based system on building performance 
regardless of other effects. 

Of interest to our analysis is the impact of our experiments on fan and chiller power. Each requires a 
separate model to estimate. To estimate fan power, 𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐, we construct a linear function in the following 
form: 

 𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐  = a1𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒 + a2𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑 + a3𝐸𝐸𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑 + a4𝑇𝑇𝑐𝑐𝑒𝑒 + a5�̇�𝑣𝑐𝑐𝑒𝑒 + a6𝜌𝜌 + 𝐶𝐶  (5.2) 

where  𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑 = the mixed air temperature, 
  𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒 = the supply air temperatures, 
  𝑇𝑇𝑐𝑐𝑒𝑒 = the outdoor air temperature, 
  �̇�𝑣𝑜𝑜𝑎𝑎 = the volume flow rate of the outdoor air, and 
  𝜌𝜌 = the static pressure in the air distribution system.  

Variables 𝑎𝑎1 …𝑎𝑎7 are the coefficients found through model training. The variable 𝐸𝐸 is a binary value that 
is 1 when the experiment is running, and 0 when it is not. We interact this “dummy” variable with 𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑, 
because 𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑 is affected by our experiment. That is, when the experiment is running, zone air 
temperatures are modified, resulting in a change in mixed air temperature. Thus, the coefficient, a3, 
associated with 𝐸𝐸 allows us to estimate the average impact of the experiment on mixed air temperature. 
The last term, 𝐶𝐶, captures the differences between experiment and non-experiment days that are not 
accounted for by the experiment, i.e., the unobserved disturbances affecting fan power. 

A similar model can be formulated for the AHU cooling coil load, �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐: 

 �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐  = 𝑏𝑏1𝑇𝑇𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒 + 𝑏𝑏2𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑 + 𝑏𝑏3𝐸𝐸𝑇𝑇𝑚𝑚𝑐𝑐𝑚𝑚𝑠𝑠𝑑𝑑 + 𝑏𝑏4𝑇𝑇𝑐𝑐𝑒𝑒 +  𝑏𝑏5�̇�𝑣𝑐𝑐𝑒𝑒 + 𝑏𝑏6𝜌𝜌 +  𝑏𝑏7�̇�𝑣𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒   

 + 𝑏𝑏8𝐸𝐸�̇�𝑣𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒 + 𝐶𝐶 
+  𝑏𝑏8𝐸𝐸�̇�𝑣𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒 + 𝐶𝐶 

(5.3) 

where the supply air volume flow rate, �̇�𝑣𝑠𝑠𝑠𝑠𝑝𝑝𝑝𝑝𝑐𝑐𝑒𝑒, is interacted with the experiment dummy variable and 
variables 𝑏𝑏1 …𝑏𝑏9 are the coefficients found through model training. The dependent variable, cooling coil 
load, and chiller power are calculated in the manner described previously. 

Once the models are trained, we use them to predict the dependent variable (either 𝑃𝑃𝑓𝑓𝑒𝑒𝑐𝑐 or �̇�𝑄𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐) to 
produce a time-series estimate for the experiment day (𝐸𝐸 = 1). Next, we use the same model to predict 
the dependent variable for the same day, assuming the experiment was not performed (𝐸𝐸 = 0). A 
comparison between to two predictions gives an estimate of the impact of our system on building energy 
consumption and demand. 
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Two separate machine-learning techniques were investigated for training a model: general linear 
regression and Gaussian process regression. The general linear regression model is a widely used method 
for representing the relationship between dependent and independent variables. Gaussian process 
regression uses Gaussian distribution and covariance functions to perform the prediction of data. In the 
end, general linear regression was selected because it best captured the temporal behavior of the 
dependent variables and resulted in improved residuals, 𝑅𝑅2, and p value compared to Gaussian regression. 
We observed that Gaussian regression models failed to capture trends when large changes in values from 
one sample to the next exist. A possible reason is that Gaussian process model may only represent a 
limited number of covariance functions, thus the model is not flexible enough to capture the data when 
there is a sudden change (Murphy 2012). 

In the results that follow, we present analysis using Method 2. Because each experiment performed has 
unique settings, we select a separate training set from the data collected. For each experiment, we select 
the experiment day and approximately 1 week of non-experiment days both before and after the 
experiment for training.1 Other experiment days lying within this range are eliminated. 

5.3.3 Limitations and Assumptions 

A few assumptions were made before applying the machine-learning techniques to the measured data. 
First, it is assumed that data measured at one time point are independent of data measured at another time 
point, and the measured data do not affect the next data point measured after the time interval of 
measurement. Second, a few factors that are not considered in the developed models may also affect 
HVAC operation such as wind pressure on building envelope, solar insolation, environmental humidity, 
occupant behavior, and internal thermal gains. The analysis used the developed models to predict both 
situations (with and without experiment flag), and the predicted results were compared based on the 
predicted results. Therefore, the model prediction error may be considered as a system error and should 
not affect the conclusions addressed from this comparison.  

We recognize that the analysis methods described do not represent the state-of-the-art, and that other 
methods may yield different results. Although the results of model fitting show that the generalized linear 
regression method works fairly well for the current research problem, other machine-learning techniques 
are also widely used to solve nonlinear problems. We are continuing to explore additional methods for 
predicting building energy use at a range of time scales from minutes to hours. For example, neural 
networks are a nonlinear generalization of general linear models (Magoulès et al. 2013). A few studies 
described an artificial neural networks (ANNs) model for predicting the building thermal load (Forrester 
and Wepfer1984; Kawashima et al. 1996; Kreider and Wang 1992; Zhuang et al. 2015). Zhuang et al. 
(2015) conducted a case study to predict the building cooling load based on neural networks. Anstett and 
Kreider (1993) examined the accuracy of the ANN model for energy predictions. While predicting 
building energy consumption, the outputs given by ANN may not be exactly as expected, Kajl et al. 
(1997) developed a fuzzy logic to correct the ANN outputs. Use of support vector machine (SVM) 
models is another popular approach for solving nonlinear problems by creating a sparse kernel machine 
(Murphy 2012). Previous studies show that SVMs work well in predicting lone terms (such as monthly 
and annual) building energy consumption (Dong et al. 2005; Lai et al. 2008). Li et al. (2009) used SVMs 
to predict the hourly cooling load of an office building and indicated that SVMs perform better than 
neural networks; a similar conclusion is also addressed in another study (Li et al. 2010). As stated above, 
we assumed independence between measured data points in the current research. For analysis of time-
series data without this assumption, the autoregressive moving-average (ARMA) model, which is a 

                                                      
1 During model training, certain predictors may be found to be statistically insignificant. These predictors are 
eliminated from the model when it is used to subsequently predict the dependent variable. 
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classical method, could be used to predict time-series data (Murphy 2012). MacArthur et al. (1989) and 
Spethmann (1989) developed a forecasting method based on the autoregressive integrated moving-
average (ARIMA) model for an optimal cold storage controller. The Hidden Markov Model (HMM) is a 
stochastic model, which has an advantage over Markov models by representing long-range dependencies 
between observations (Murphy 2012). However, it was not much investigated in the field of building 
energy prediction (Zia et al. 2011). Mocanu et al. (2014) compared multiple machine-learning methods 
for estimating building energy consumptions. The authors investigated a newly developed stochastic 
model for time-series prediction (Continuous Restricted Boltzmann Machine [CRBM]), and concluded 
that CRBMs outperform ANNs and HMMs. As a summary, other machine-learning techniques listed 
above are robust models for solving nonlinear problems when generalized linear models may not provide 
good results. However, the disadvantages of using these models are that they may require sufficient and 
large amount of training data to achieve desired accuracy of predictions, and they have extremely high 
complexity compared to statistical models (Magoulès et al. 2013).  

5.4 Results and Analysis 

In this section we present results from physical testing of the market-based controls. We stress that these 
results have been significantly affected by the challenges already enumerated and should be interpreted as 
preliminary and not necessarily representative. Here, we analyze the results critically and provide further 
commentary on deficiencies identified in our tests.  

5.4.1 Flat Price Experiments 
Simulation experiments shown in our previously published work demonstrated an inverse relationship 
between electricity price and both daily HVAC electricity use and peak electric demand (Hao et al. 2016). 
In the fixed price experiments, the same observation generally holds with a few exceptions. A summary 
of these metrics is presented in Table 5.12. Note that negative values indicate a reduction over the 
baseline. 
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Table 5.12.  Difference in energy and demand for flat price experiments. 

Experiment Date Series Energy (kWh) Energy (%) Demand (kW) Demand (%) 

June 29 
Fan -0.27 -0.14% -0.27 -6.48% 
Chiller 0.00 0.00% -0.02 -0.20% 
Total -0.27 -0.04% -0.16 -1.15% 

August 18 
Fan -0.14 -0.09% -0.14 -2.99% 
Chiller -0.21 -0.04% -0.21 -2.13% 
Total -0.35 -0.05% -0.35 -2.43% 

September 1 
Fan -0.28 -0.20% -0.24 -6.59% 
Chiller -0.14 -0.04% -0.12 -1.43% 
Total -0.42 -0.09% -0.42 -3.71% 

September 8 
Fan -0.03 -0.03% -0.03 -1.17% 
Chiller -0.12 -0.05% -0.15 -2.20% 
Total -0.15 -0.04% -0.19 -1.99% 

September 13 
Fan -0.19 -0.12% -0.19 -6.57% 
Chiller -0.03 -0.01% 0.08 0.98% 
Total -0.22 -0.04% -0.11 -1.02% 

September 14 
Fan -0.21 -0.17% -0.21 -7.55% 
Chiller -0.04 -0.02% -0.02 -0.26% 
Total -0.25 -0.07% -0.24 -2.35% 

In contrast to the direct comparison method, the regression method shows reduced demand and energy 
during the June 29 experiment across both the fan and chiller. Predicted baseline and experiment results 
are shown in Figure 5.2. Consistent with the measured data, the model predicts a spike in chiller peak 
demand in the afternoon. Recall from the previous discussion that there is no way to determine whether 
this spike resulted from the experiment. By comparison, August 18 (Figure 5.3) is perhaps the “cleanest” 
result of all flat price experiments, with no unexplained chilled water spikes, and little fan power 
oscillation from static pressure reset logic. Coincidently, the greatest reduction in chiller demand and 
second greatest total HVAC electric demand is measured during this experiment. The nearly constant fan 
power between mid-morning and early afternoon coincides with all zones requesting minimum airflow. 

 
Figure 5.2.  Comparison of measured and model-predicted chiller and fan power, June 29. 
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Figure 5.3.  Comparison of measured and model-predicted chiller and fan power, August 18. 

The last week of August marks the end of hot weather and its associated cooling loads. Beyond this date, 
economizer operation is observed with increasing regularity. In addition, estimated chiller power becomes 
much less consistent. This can be observed in the September 1 and September 8 experiments (Figure 5.4 
and Figure 5.5). Recall that chiller power is estimated from chilled water load, which is a function of flow 
rate and coil supply/return temperature, and not a true measurement of electric power. The frequent 
changes in the estimated chiller power can be attributed to water flow adjustments resulting from low 
cooling loads and economizer operation, which are compounded by frequent changes in the static 
pressure set point. In general, all zones tend to request minimum airflow; the static pressure set point 
appears to be driven by a single zone, Zone 133. Recall that the temperature sensor in this zone appears to 
provide faulty measurements, resulting in frequent changes in airflow and subsequent changes in static 
pressure set point. 

 
Figure 5.4.  Comparison of measured and model-predicted chiller and fan power, September 1. 
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Figure 5.5.  Comparison of measured and model-predicted chiller and fan power, September 8. 

Results from experiments on September 13 and 14 (Figure 5.6 and Figure 5.7) show savings similar to 
previous days, with the exception of chiller demand on September 13. It is unclear why chiller demand 
increased; there is no change in supply water temperature as we observe in the June 29 case. We note that 
the outdoor air temperatures measured during these days were substantially lower than in previous 
experiments. This resulted in significant economizer operation, and perhaps most importantly, 
consistently low zone airflows that deviate little from the configured minimum values, except in cases 
where static pressure reset logic results in increased airflow.  

 
Figure 5.6.  Comparison of measured and model-predicted chiller and fan power, September 13. 



 

5.16 

 
Figure 5.7.  Comparison of measured and model-predicted chiller and fan power, September 14. 

5.4.2 Demand-Limiting Experiments 

Demand limit experiments show mixed results (Table 5.13) compared to expectations from simulations. 
Similar to flat price experiments conducted between late August and September, plots for these three 
experiments (Figure 5.8, Figure 5.9, and Figure 5.10) show low chiller load in the morning hours due to 
economizer operation, and frequent fan power oscillations due to static pressure reset. Results from 
August 25 indicate that market-based control results in an increase in demand. In this case, a demand 
limit of 10 MW is imposed, which is approximately 90% of the demand measured during the days prior to 
the test. Logs collected during the experiment indicate that the limit is exceeded consistently during the 
1.5 hours in which the demand limit is imposed, and that set points are generally increased in an attempt 
to decrease load. One zone is observed to lower its set point during the experiment, which is not unusual 
as zones trade-off against each other in the market, but the total increase in demand this one zone creates 
does not account for the net increase in building HVAC demand. After analyzing the occupancy status for 
this day compared to that used in regression model training, we speculate that occupancy may play a role 
in these results. August 31 has a similar, but smaller, increase in chiller demand, which is offset by a 
decrease in fan demand that results in a net decrease in building HVAC demand. Interestingly, on this 
day, the demand limit (also 10 MW) was exceeded only a handful of times between 14:00 and 17:00, and 
for only 5–10 minutes at a time. Savings in both energy and demand are observed in the September 2 
case. Though modest, these results are consistent with the simulation. On this day, a much lower demand 
limit of 6.5MW is imposed, which is exceeded six separate times throughout the day for durations of 15 
minutes to 1 hour.  
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Table 5.13.  Difference in energy and demand for demand limit experiments. 

Experiment Date Series Energy (kWh) Energy (%) Demand (kW) Demand (%) 

August 25 
Fan 0.00 0.00% 0.00 0.00% 
Chiller 0.23 0.04% 0.25 2.59% 
Total 0.23 0.03% 0.25 1.94% 

August 31 
Fan -0.11 -0.07% -0.11 -3.43% 
Chiller 0.01 0.00% 0.08 0.95% 
Total -0.10 -0.02% -0.03 -0.26% 

September 2 
Fan -0.05 -0.04% -0.05 -1.80% 
Chiller -0.12 -0.05% -0.13 -1.66% 
Total -0.17 -0.05% -0.18 -1.71% 

 
Figure 5.8.  Comparison of measured and model-predicted chiller and fan power, August 25. 

 
Figure 5.9.  Comparison of measured and model-predicted chiller and fan power, August 31. 
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Figure 5.10.  Comparison of measured and model-predicted chiller and fan power, September 2. 

 
Figure 5.11.  Comparison of measured and model-predicted chiller and fan power, September 15. 
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6.0 Conclusions and Next Steps 

Experimental results, though limited, showed promise for the application of market-based controls to 
commercial building HVAC systems. Savings were modest compared to results from previous 
simulations, but we believe they can be improved. Some differences between experiments and 
simulations were expected due to mismatches between the EnergyPlus model and the physical building, 
while many differences may likely be attributed to imperfect modeling of building dynamics. In 
simulation, decisions made by VAV agents were acted upon immediately and control was perfect; in a 
physical experiment, control decisions came with delays, and control was imperfect.  

Issues encountered during early testing and integration (see Section 5.2.3) severely limited the number of 
tests we were able to perform. As a result, many of the flat price experiments occurred after peak cooling 
season. Additionally, we were unable to fully test demand-limiting and dynamic price cases.  

Because of the high minimum airflows, tests performed later in the summer were unable to affect 
electricity demand in any meaningful way; zones stayed at minimum airflow during experiments due to 
low cooling demand. Although it was difficult to determine to what extent the minimum airflow 
configuration affected the experiments, we believe that with additional flexibility in airflow, additional 
demand and energy savings can be achieved, especially when loads are low.  

We were unable to determine the impact of the static pressure reset logic on these experiments. In some 
experiments, the reset may have been be triggered by adjustments made by the VAV agents; in others, 
zones outside of our control may have triggered this logic, e.g., Zones 133 and 142. An interesting 
question we would like to answer is whether or not the market system could be used to prevent a static 
pressure reset, and thus prevent a spike in fan power. 

The role of occupancy in our experiments is yet another area in which we should focus future efforts. 
Recall that occupied and standby cooling set point limits were different. A difference in occupancy 
between days may have a significant impact on energy use and demand, irrespective of an experiment. At 
the least, our analysis methodology needs to control for occupancy so that differences can be correctly 
attributed. For example, differences in occupancy between days used to train the regression model and the 
experiment day could incorrectly attribute the difference in energy consumption to the experiment. 
Although we cannot definitively point to this as a cause for the increase we observed on August 25, 
occupancy is nevertheless a key factor that needs to be considered. 

One key insight we have gained as a result of early testing regards the precision of the physical VAV 
controller. Specifically, early testing showed that VAV agents often make very small temperature set 
point adjustments, on the order of 0.1°F. The physical VAV controller is incapable of controlling to this 
level of precision, and thus cooling demand remains unaffected. To correct this, we made changes to the 
VAV logic such that the agent bids a wider range, and therefore makes larger temperature set point 
adjustments for a given clearing price. With additional testing, further refinement of this bidding strategy, 
and correction of a few other key issues, e.g., zone regression coefficients, we believe that we may show 
improved performance approaching that observed in previous simulation studies. 

Future efforts will be focused on exploring dynamic signals and the extension of market-based control to 
heating operation. We will continue to adapt this method to additional HVAC system types. As discussed 
in Section 3.4, an RTU-HP model has been developed, which, along with the VAV system developed 
here, will be used in a campus-wide deployment of transactive controls during the second phase of this 
project. 
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Appendix A 
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Supplement to Alternative Market Structures 

A.1 Markets and Optimization 

In a market structure presented in this document, the ultimate goal is to maximize the total benefit, or 
social welfare, received by the agents. The total benefit, 𝐵𝐵𝑠𝑠𝑐𝑐𝑠𝑠, can be described as follows: 

 𝐵𝐵𝑠𝑠𝑐𝑐𝑠𝑠 = 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑠𝑠𝑐𝑐𝑠𝑠𝑓𝑓𝑐𝑐𝑠𝑠(𝑥𝑥1, … , 𝑥𝑥𝑐𝑐)  (A.1) 

where 𝑥𝑥𝑐𝑐 is the allocations of the commodities received by the 𝑖𝑖th agent and 𝑛𝑛 is the number of the agents. 
The total benefit can be also expressed as 

 𝐵𝐵𝑠𝑠𝑐𝑐𝑠𝑠 = ∑ 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑠𝑠𝑐𝑐𝑠𝑠𝑓𝑓𝑐𝑐𝑠𝑠,𝑐𝑐(𝑥𝑥𝑐𝑐)𝑐𝑐
𝑐𝑐=1   (A.2) 

where 𝑓𝑓𝑐𝑐𝑐𝑐𝑐𝑐,𝑏𝑏𝑠𝑠𝑐𝑐𝑠𝑠𝑓𝑓𝑐𝑐𝑠𝑠,𝑐𝑐 describes the benefit for the 𝑖𝑖th agent. When the benefit of an agent depends only on 
the allocation of the commodity it receives, Equations (A.1) and (A.2) are equivalent and the allocation 
problem is said to be separable (Karlsson et al. 2007). As we have shown in our previously published 
work (Hao et al. 2016), the maximum global benefit, i.e., the optimal solution to the social welfare 
maximization (SWM) problem, is equivalent to that obtained by maximizing the welfare of each agent 
individually when the problem satisfies the Karush-Kuhn-Tucker (KKT) optimality conditions. 
Furthermore, we have shown that the market-based method is equivalent to solving the SWM problem 
when KKT criteria are satisfied. Thus, the market system yields a globally optimal result if the 
optimization problem is separable and satisfies KKT. 

When the problem is inseparable, optimality is not assured by maximizing the individual benefit of each 
agent. Therefore, the market system cannot guarantee that the settling price and quantity are globally 
optimal. As a result, an inseparable system is much more difficult to handle than a separable system that 
features market-based control. Because agents are designed to maximize their own benefits (local 
benefits) in the market system, they may make decisions that undermine the global objective. In order for 
agents to solve the global objective, they require information from others, thereby fundamentally breaking 
the “rules” of the market system. Furthermore, imbuing agents with this information inhibits scalability. 
This is not to say that inseparable problems cannot be solved using market methods, rather that some 
relaxation of the rules is necessary as is well-designed information sharing to support scaling of the 
system. Finally, it is not at all obvious whether the types of inseparable problems encountered in building 
systems cannot be solved by market methods in an optimal or near-optimal way. Much additional study is 
required to understand when and how markets can be used for these types of problems.  
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Appendix B 
 

Supplement to Rooftop Unit Model 

B.1 BUILDING10 System Characteristics  

Eleven heat pumps serve this building. Heat pumps installed in BUILDING10 consist of four Carrier  
models, which are categorized here as models E, F, G, and H. There are eight model Es, one model F, one 
model G, and one model H whose cooling and heating specifications are listed in Table B.1.  

Table B.1.  BUILDING10 heating and cooling systems. 

Model 
Net Cooling 

Capacity (kW) 
System Power 

(kW) 
Cooling 

EER 
Nominal Airflow 

(m3/h) 
Net Heating 

Capacity (kW) 
Heating 

COP 
E 21.0 6.76 10.5 4080 20.2 3.4 
F 16.7 6.34 9.0 3400 16.7 7.5(a) 
G 20.5 7.78 9.0 4077 21.1 3.2 
H 10.4 4.04 9.0 2157 10.4 3.1 
(a) COP (coefficient of performance) was not provided. Value shown is the Heating Seasonal Performance Factor 

(HSPF). 

The specification for BUILDING10 heat pump fans are listed in Table B.2. The manufacturer-
recommended fan motor heat is also included in the table. 

Table B.2.  BUILDING10 indoor and outdoor fan specifications. 

 Outdoor Fan Indoor Fan 

Model Type Motor power (kW) Type Motor power (kW) Fan motor heat (kW) 
E Propeller  0.186 Centrifugal  1.79 0.781 
F Propeller  0.325 Centrifugal  0.9 0.723 
G Propeller  0.325 Centrifugal  1.79 0.723 
H Propeller  0.186 Centrifugal  0.373 NA(a)       

(a) Performance data are given in net quantities and no information provided by the manufacturer about 
fan motor heat. 
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B.2 Nameplate Equipment Characteristics 

Table B.3.  A sample of general data provided by the manufacturer (Trane 2004). 
  WSC060AD,T WSC072AD,T WSC090AD,T WSC120AD,T 
Cooling Performance 1 

    Gross Capacity - kW (MBh)  17.3 (59.0)  22.6 (77.0)  27.8 (95.0)  34.6 (118.0) 
COP (EER) 2  2.72 (9.3)   3.31 (11.3)  3.20 (10.9)  3.28 (10.1) 
Nominal Airflow - m3/h (cfm)  3400 (2000)  4080 (2400)  5100 (3000)  6800 (4000) 
Rated Airflow - m3/h (cfm)  3400 (2000)  3570 (2100)  4460 (2625)  5950 (3500) 
Net Capacity - kW (MBh)  16.7 (57.0)  21.4 (73.0)  26.4 (90.0)  33.1 (113.0) 
System Power - kW  6.13 6.46 8.26 11.1 
Heating Performance 1         
High Temperature Capacity - kW (MBh)  16.0 (54.5)  19.9 (68.0)  24.0 (82.0) 3 1.9 (109.0) 
COP  3.4 3.45 3.54 3.36 
System Power - kW  4.71 5.76 6.78 9.48 
Compressor         
Number - Type  1-Climatuff Scroll  1-Climatuff Scroll  1-Trane 3-D Scroll  2-Climatuff Scroll 
Outdoor Sound Rating - dB3  80 85 85 79 
Outdoor Fan - Type  Propeller  Propeller  Propeller  Propeller 
No. Used / Diameter (in.)  1 / 22 1/26 1/26 1/26 
Drive Type / No. Speeds  Direct/1  Direct/1 Direct/1 Direct/1 
CFM  2900 5100 5200 5800 
No. Motors / kW (HP)  1/0.30(0.40)  1/.56 (0.75)  1/.56 (0.75)  1/.56 (0.75) 
Motor RPM  950 950 950 950 
Belt Drive Indoor Fan - Type  FC Centrifugal  FC Centrifugal  FC Centrifugal  FC Centrifugal 
No. Used  1 1 1 1 
Fan Diameter x Width - mm - in.  280 X 280 (11 x 11)  305 X 305 (12 x 12)  305 X 305 (12 x 12)  (381 X 381) 15 x 15 
Drive Type / No. Speeds  Belt / Variable Speed Belt / Variable Speed Belt / Variable Speed Belt / Variable Speed 
No. Motors  1 1 1 1 
Standard Motor Power - kW (HP)  1.1 (1.5)  1.1 (1.5)  1.5 (2.0)  2.2 (3.0) 
Oversized Motor Power - kW (HP)  -  1.5 (2.0)  2.2 (3.0)  - 
Motor RPM - Standard / Oversized  1450 / -  1450 /1450  1450/ 2850  2850 / - 
Motor Frame Size  56 56 56 56 
NOTES: 

    1. Cooling Performance is rated at 35.0°C (95°F) ambient, 26.7°C (80°F) entering dry bulb, 19.4°C (67°F) entering wet bulb. Heating Performance is rated at 20.0°C (68°F) 
ambient, 8.3°C 
(47°F) entering dry bulb, 6.1°C (43 F) entering wet bulb. Gross capacity does not include the effect of fan motor heat. Net capacity includes the effect of fan motor heat. Units are 
suitable for operation to + 20 % of nominal airflow. 
2. EER are rated at ARI conditions. 

    3. Outdoor Sound rating shown is tested in accordance with ARI Standard 270. For more information refer to Performance Data Table “Sound Power Level”. 
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B.3 Catalog Performance Data 

Table B.4.  Sample of manufacturer's performance data (Trane 2004). 
Table PD-1 — Gross Cooling Capacities (kW) WSC060AD,T (SI) 

                 
  

Enter. Ambient Temperature (°C) 

 
Dry  30 35 40 45 

 
Bulb  

          
Entering Wet Bulb Temperature (°C) 

         m3/h  Temp  16 19 22 16 19 22 16 19 22 16 19 22 
Air-
flow  (°C)  TGC  SHC   TGC    SHC   TGC    SHC   TGC    SHC   TGC    SHC   TGC    SHC   TGC    SHC   TGC    SHC   TGC    SHC   TGC    SHC   TGC    SHC   TGC    SHC   

3060 24 14.5 13.2 16.6 10.7 18.3 7.6 15.6 13.8 17.7 11 19 8 13.3 12.6 15.3 10.1 17.4 7.2 12.1 12 13.9 9.5 16.3 6.6 

 
27 15.3 15.3 16.7 13.4 18.4 10.4 16.3 16.3 17.8 13.9 19.1 10.8 14.3 14.3 15.4 12.8 17.5 10 13.3 13.3 14.1 12.2 16.3 9.5 

 
30 16.7 16.7 17 16.3 18.5 13.2 17.6 17.6 18 16.8 19.3 13.4 15.7 15.7 15.8 15.8 17.5 12.8 14.7 14.7 14.7 14.7 16.4 12.3 

  33 17.9 17.9 17.9 17.9 18.7 15.9 18.6 18.6 18.6 18.6 19.5 16 17 17 17 17 17.7 15.6 16 16 16 16 16.6 15.2 
3400 24 14.9 14.1 16.9 11.3 18.5 7.8 16.1 14.7 18 11.5 19.2 8.2 13.7 13.5 15.6 10.4 17.6 7.4 12.5 12.5 14.2 10.1 16.5 6.9 

 
27 16 16 17 14.2 18.6 10.9 17 17 18.1 14.7 19.3 11.5 15 15 15.8 13.6 17.7 10.5 13.9 13.9 14.5 13 16.6 10 

 
30 17.4 17.4 17.4 17.4 18.8 13.8 18.2 18.2 18.4 17.8 19.5 13.9 16.4 16.4 16.4 16.4 17.8 13.6 15.4 15.4 15.4 15.4 16.7 13.2 

 
33 18.5 18.5 18.5 18.5 19 16.7 19.1 19.1 19.1 19.1 19.8 16.7 17.6 17.6 17.6 17.6 18.1 16.6 16.7 16.7 16.7 16.7 17 16.3 

3740 24 15.3 15 17.2 11.5 18.7 8.1 16.5 15.6 18.2 12 19.3 8.4 14.1 14.1 15.9 11 17.8 7.6 12.9 12.9 14.5 10.8 16.7 7.1 

 
27 16.6 16.6 17.4 15 18.8 11.2 17.5 17.5 18.3 15.4 19.6 11.3 15.6 15.6 16.2 14.5 17.9 11 14.4 14.4 14.8 13.9 16.8 10.5 

 
30 17.9 17.9 17.9 17.9 19 14.4 18.6 18.6 18.7 18.7 19.7 14.4 17 17 17 17 18 14.2 15.9 15.9 15.9 15.9 16.9 13.9 

  33 18.9 18.9 18.9 18.9 19.3 17.5 19.5 19.5 19.5 19.5 20 17.4 18.1 18.1 18.1 18.1 18.4 17.5 17.2 17.2 17.2 17.2 17.3 17.2 
4080 24 15.6 15.6 17.4 12.1 18.8 8.3 16.8 16.4 18.4 12.4 19.5 8.6 14.5 14.5 16.1 11.5 17.9 7.9 13.4 13.4 14.7 10.8 16.9 7.3 

 
27 17.1 17.1 17.6 15.8 18.9 11.6 18 18 18.5 16 19.7 11.8 16.1 16.1 16.5 15.3 18.1 11.4 14.9 14.9 15.1 14.7 17 11 

 
30 18.3 18.3 18.3 18.3 19.2 14.9 19 19 19 19 19.9 14.8 17.4 17.4 17.4 17.4 18.2 14.9 16.4 16.4 16.4 16.4 17.1 14.6 

  33 19.2 19.2 19.2 19.2 19.5 18.2 19.8 19.8 19.8 19.8 20.2 17.9 18.5 18.5 18.5 18.5 18.6 18.2 17.6 17.6 17.6 17.6 17.6 17.6 
Notes
: 

                         1. All capacities shown are gross and have not considered indoor fan heat. To obtain net cooling, subtract indoor fan heat. 
         2. TGC = Total Gross Capacity 

                      3. SHC = Sensible Heat Capacity 
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B.4 BUILDING10 Model Coefficients 

B.4.1 Cooling Capacity Coefficients 

Cooling capacity coefficients of Models E through H are tabulated in Table B.5. An example of a fitted 
line plot is shown in Figure B.1. 

Table B.5.  BUILDING10 cooling capacity coefficients and associated 𝑹𝑹𝟐𝟐s. 

Systems 𝑎𝑎1 𝑎𝑎2 𝑎𝑎3 𝑎𝑎4 𝑎𝑎5 𝑎𝑎6 𝑅𝑅2 
Model E -0.0032 0.0403 0.0307 -1.3346 0.0013 36.1903 0.97 
Model F -0.0011 -0.0584 0.0002 0.4656 0.0001 7.7568 0.99 
Model G -0.0024 0.0409 -0.0010 0.6125 0.0000 6.7663 0.99 
Model H -0.0001 -0.0352 0.0009 0.3576 -0.0022 2.6543 0.99 

 
Figure B.1.  Fitted line plot showing the estimated vs. actual cooling capacity for Model E. 

B.4.2 BUILDING10 Cooling Power Consumption Coefficients 

Cooling electric power consumption coefficients of Models E through H are tabulated in Table B.6, and 
an example of a fitted line plot is shown in Figure B.2. 

Table B.6.  BUILDING10 cooling electric power coefficients and associated 𝑹𝑹𝟐𝟐s. 

System 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑅𝑅2 
Model E 0.0009 0.0449 0.0038 -0.1917 0.0002 5.4305 1.00 
Model F 0.0010 0.0137 -0.0006 0.0708 0.0003 1.5879 1.00 
Model G 0.0004 0.0965 0.0005 0.0105 0.0001 1.7897 1.00 
Model H 0.0000 0.0029 0.0009 -0.0565 0.0012 3.5832 1.00 
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Figure B.2.  Fitted line plot showing estimated vs. actual cooling electric power for Model E. 

B.4.3 BUILDING10 Heating Capacity Coefficients 

Heating capacity coefficients for Models E through H are tabulated in Table B.7, and examples of fitted 
line plots for Models E and F are shown in Figure B.3.  

Table B.7.  BUILDING10 heating capacity coefficients and associated 𝑹𝑹𝟐𝟐s. 

System 𝑐𝑐1 𝑐𝑐2 𝑐𝑐3 𝑐𝑐4 𝑐𝑐5 𝑐𝑐6 𝑅𝑅2 
Model E 0.0048 0.4781 -0.0026 0.0506 0.0019 14.8444 0.97 
Model F 0.0060 0.3949 -0.0378 1.4607 -0.0003 0.0001 0.95 
Model G 0.0033 0.4926 -0.0001 -0.0310 -0.0007 17.4735 0.99 
Model H 0.0035 0.3553 -0.0024 0.0281 -0.0010 7.6246 0.99 

 
Figure B.3.  Fitted line plots showing estimated vs. actual heating capacity for Models E and F. 

B.4.4 BUILDING10 Heating Power Consumption Coefficients 
Heating electric power consumption coefficients for Models E through H are tabulated in Table B.8 and 
examples of fitted line plots for Model E and F are illustrated in Figure B.4.  
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Table B.8.  BUILDING10 heating electric power consumption coefficients and associated 𝑹𝑹𝟐𝟐s. 

System 𝑑𝑑1 𝑑𝑑2 𝑑𝑑3 𝑑𝑑4 𝑑𝑑5 𝑑𝑑6 𝑅𝑅2 
Model E 0.0004 0.0293 0.0001 0.0783 0.0010 3.5541 0.98 
Model F 0.0007 0.0362 -0.0103 0.4748 0.0007 0.0000 0.89 
Model G 0.0008 0.0433 -0.0002 0.0984 0.0010 4.0722 0.99 
Model H 0.0001 0.0151 0.0001 0.0117 0.0007 2.7920 0.99 

 
Figure B.4.  Fitted line plots showing estimated vs. actual heating electric power for Models E and F.  
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