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Summary 

This report describes how the intelligent load control (ILC) algorithm can be implemented to achieve 

peak demand reduction while minimizing impacts on occupant comfort. The algorithm was designed to 

minimize the additional sensors and minimum configuration requirements to enable a scalable and cost-

effective implementation for both large and small-/medium-sized commercial buildings. The ILC 

algorithm uses an analytic hierarchy process (AHP) to dynamically prioritize the available curtailable 

loads based on both quantitative (deviation of zone conditions from set point) and qualitative rules (types 

of zone). Although the ILC algorithm described in this report was highly tailored to work with rooftop 

units, it can be generalized for application to other building loads such as variable-air-volume (VAV) 

boxes and lighting systems. 

 

As renewable generation technologies form a significant (>20%) fraction of grid capacity, utilities will be 

forced to maintain a significant standby capacity to mitigate the imbalance between supply and demand 

because the generation remains variable in nature. Because buildings consume more than 75% of 

electricity, building loads can be used to mitigate some of the imbalance. This report describes Pacific 

Northwest National Laboratory’s (PNNL’s) design, development, testing, and validation of the ILC 

algorithm that can be used to manage loads in a building or group of buildings using both quantitative and 

qualitative criteria. It describes how the ILC algorithm can be implemented to achieve peak demand 

reduction while minimizing impacts on occupant comfort. 

 

The ILC algorithm can be implemented on low-cost single-board computers (Raspberry PI, BeagleBone, 

etc.). By anticipating future demand, the ILC process can be extended to add advanced control features 

such as precooling and preheating to alleviate comfort issues when operation of the rooftop units is 

curtailed to manage the peak demand.  

 

The ILC algorithm was initially tested in a simulation environment to control a group of rooftop units to 

manage the building’s peak demand while still keeping zone temperatures within acceptable deviations. 

After successful testing of the algorithm in the simulation environment, it was successfully deployed on a 

building on the PNNL campus in Richland, Washington. The test demonstrated how the ILC algorithm 

could be used to maintain the target peak while maintaining satisfactory comfort.  
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1.0 Introduction 

To mitigate the impacts of climate change, there is a significant impetus to make generation of electricity 

in the United States cleaner by installing rooftop solar photovoltaic and utility-scale wind generation 

systems. Although these renewable energy generation technologies are cleaner, their generation of 

electricity is variable in nature. As these technologies form a significant (>20%) fraction of the grid 

capacity, utilities will be forced to maintain a significant standby capacity to mitigate the imbalances 

between supply and demand. The traditional approach of balancing power is cost-effective when the 

utilities only had to maintain between 5% and 10% of the capacity. An alternative approach to mitigating 

this imbalance is to manage the load (demand side). Because more than 75% of electricity consumption 

occurs in buildings, building loads can be used to mitigate some of the imbalance.  

The control of building end-use loads has been shown to provide significant demand relief in response to 

grid needs (Lu and Katipamula 2005). In addition, building loads have been used to limit electric demand 

when a demand charge is a significant percentage of the total energy cost or when a building has to 

maintain a certain level of maximum demand in response to changes in the price of electricity over time. 

However, an accurate and reliable load control strategy is required to manage peak loads because even 

one excursion could cause a significant increase in utility bills.  

The duty-cycling control strategy has been traditionally used to manage peak demand by controlling the 

ratio of the ON-period to the total cycle time of rooftop units (RTUs) or air-handling units (Krarti 2000). 

Two traditional duty-cycling strategies exist for operating building RTUs (Thumann and Mehta 2001): 

1) a parallel duty-cycling approach, in which all RTUs are cycled ON or OFF at the same time; and 2) a 

staggered duty-cycling approach, in which the RTU ON and OFF cycles are staggered. For example, in 

the case of staggered duty-cycling only, some (e.g., 1/3 or 2/3) of the RTUs operate at any given time. 

Although both duty-cycling methods provide relief from electric demand, neither dynamically prioritizes 

the RTUs’ operation to be curtailed to manage peak electricity consumption. It is generally difficult to 

identify the RTUs whose operations can be curtailed without affecting zone comfort, and indiscriminate 

curtailment of RTUs can lead to comfort issues by negatively affecting the zone temperature and 

humidity conditions. Therefore, a load control strategy is needed that anticipates the future effects of 

thermal comfort and peak load relief based on current conditions and historical data.  

This report describes Pacific Northwest National Laboratory’s (PNNL’s) development and validation of 

one such intelligent load control (ILC) algorithm that can be used to manage load while also considering 

occupant comfort. The ILC algorithm can dynamically prioritize the available loads for curtailment using 

both quantitative (deviation of zone conditions from set point) and qualitative rules (type of zone) in a 

building or multiple buildings (a campus). The ILC algorithm uses the analytic hierarchy process (AHP) 

to prioritize loads for curtailment.  

The AHP is a structured technique for organizing and analyzing complex decisions based on mathematics 

and psychology (Saaty and Vargas 2013). The process can generate a numerical score to establish the 

prioritization of each alternative being considered based on associated decision criteria. The AHP is 

applicable when it is difficult to formulate a goal or quantitative criteria for evaluation. The AHP also 

allows for the use of qualitative as well as quantitative criteria to solve complex decision-making 

problems (Cheng and Li 2002). It decomposes the problems into a hierarchy of elements influencing a 

system by incorporating three levels: the objectives, criteria, and alternatives of a decision. The process 

has the ability to prioritize a set of criteria used to rank the alternatives of a decision and distinguish, in 

general, the more important factors from the less important factors. Pair-wise comparison judgments are 

made with respect to the attributes of one level of hierarchy given the attribute of the next higher level of 
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hierarchy from the main criteria to the sub-criteria (Crowe and Noble 1998). AHP can also solicit 

consistent subjective expert judgment by using a consistency test. Triantaphyllou and Stuart (1995) 

applied the AHP to solving complex multi-criteria decision-making problems in a matrix structure.  

The AHP method has been used for demand response control in the power sector. Ding et al. (2006) 

proposed a dynamic load-shedding scheme of electric power systems based on the AHP decision-making 

process. According to Aalami et al. (2010), the AHP can be used to deal with multiple market operational 

problems such as price spikes, insufficient spinning reserve margin, and system security and reliability. 

Goh and Kok (2010) discussed the AHP applied to similar dynamic load-shedding operational problems 

for the electrical power system. They prioritized dynamic loads according to their importance by using 

criteria determined from previous experiences and case studies.  

Only a few studies used AHP for building applications. Yao et al. (2004) applied the AHP to integrate the 

advantages of four forecasting models of cooling loads and improved accuracies. In that case, the AHP 

was employed to determine the optimal weights of each model. The proposed approach was shown to 

significantly improve cooling load forecasting by using pair-wise judgments between models with 

periodically updated weights. The research conducted by Wong and Li (2008) proposed a multi-criteria 

decision-making model using the AHP to evaluate the selection of intelligent building (IB) systems. They 

identified key selection criteria for IB systems based on a survey of IB practitioners. The AHP was 

applied to prioritize and assign important weights to the perceived criteria in the survey. The results 

suggest that the IB system was determined by a disparate set of selection criteria that had different 

weightings. Work efficiency is perceived to be the most important core selection criterion for various IB 

systems; user comfort, safety, and cost-effectiveness are also considered significant. Bian et al. (2015) 

introduced an expert-based demand curtailment allocation approach using the AHP, which allowed an 

electric utility to prioritize the load curtailment for each of its distribution substations using load levels, 

capacity, customer types, and load categories. The AHP was used to model a decision-making process 

according to opinions from experts and objective parameters. Simulation case studies were performed to 

show the demand curtailment allocations among different distribution substations.  

This report describes a load control strategy based on a dynamic prioritization of a list of curtailable loads 

(e.g., RTUs) that is updated frequently. The ILC based on the AHP was first evaluated and validated 

using a simulation model that employs four RTUs. Simulation studies were performed to demonstrate 

how the ILC algorithm can be implemented to manage peak energy consumption. Simulation results 

showed that ILC algorithm is capable of reducing peak demand without significantly reducing occupant 

comfort. Overall, the ILC algorithm allows coordination of the RTU operations and provides more 

intelligent means of load management than the traditional duty-cycling approach. 
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2.0 Description of the Analytic Hierarchy Process 

The AHP is a structured technique for organizing and analyzing complex decisions. It provides the 

capability to specify numerical weights representing the relative importance of each individual alternative 

as well as their associated criteria with respect to the goal. The AHP consists of four steps: 1) pair-wise 

comparison of selected criteria, 2) formulation of a priority criteria vector, 3) consistency checking, and 4) 

aggregation of final priorities. Each of these four steps is briefly described below followed by a detailed 

description of an example implementation. 

2.1 Pair-Wise Comparison of Selected Criteria 

The AHP was developed based on the calculation of eigenvector, 𝑣⃗, between a pair of alternatives under 

evaluation (Saaty 2003). The 𝐴(𝑣⃗) can be calculated by multiplying the eigenvalue, 𝜆, corresponding to 𝑣⃗ 

as shown in Equation (1). 

 

𝐴(𝑣⃗) = 𝜆 ∙ 𝑣⃗ (1) 

The 𝜆 indicates the comparison rank of criteria, which has ranking values between 1/9 and 9 that are 

given by the decision-makers. The relative importance of the two criteria is measured and evaluated 

according to a numerical scale from 1 to 9. Error! Reference source not found. shows how to translate 

the decision-maker’s qualitative evaluations of the relative importance of the two criteria into numbers. It 

is also possible to assign intermediate values (e.g., 2, 4, 6, and 8) that do not correspond to a precise 

interpretation. The higher the value, the more important the corresponding criterion is. Pair-wise 

comparison is conducted to determine qualitatively which criteria are more important and assign to each 

criterion a qualitative weight. For example, if 𝜆𝑎 is absolutely more important than 𝜆𝑏 it is assigned a 

value of 9, and 𝜆𝑏 must be absolutely less important than 𝜆𝑎 so it is valued at 1/9.  

Table 1.  Ranking scale for criteria (Saaty and Vargas 2013). 

Intensity of 

Importance Definition Explanation 

1 Equal importance Two criteria contribute equally to the goal. 

3 Somewhat more important One criterion is slightly more important than the other. 

5 Much more important One criterion is strongly more important. 

7 Very much more important One criterion is very strongly more important. 

9 Absolutely more important One criterion is absolutely more important. 

2, 4, 6, 8 Intermediate values These values are used when compromise is needed. 

2.2 Formulation of the Priority Criteria Vector 

A judgment matrix (A) is created based on the pair-wise comparison as shown in Equation (2). The 

judgment matrix allows a decision-maker to identify, analyze, and rate the strength of relationships 

between a set of information. The matrix, A is a n × n real matrix, where n is the number of criteria. 
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𝐴 =  [

𝑎11 ⋯ 𝑎1𝑛

⋮ ⋱ ⋮
𝑎𝑛1 ⋯ 𝑎𝑛𝑛

] 
(2) 

 

Each entry aij of A is formed by comparing the row element ai with the column element aj. Each entry aij 

of the matrix represents the importance of the ith criterion relative to the jth criterion based on Table 1. If 

aij > 1, then the ith criterion is more important than the jth criterion; if aij < 1, then the ith criterion is less 

important than the jth criterion. If two criteria have the same importance, then the entry aij is 1. An 

element aii is equally important when compared to itself; therefore, the main diagonal must be aii = 1 for 

all i. The entries aij and aji satisfy Equation (3): 

 

aij·aji = 1 (3) 

The matrix, A is normalized by multiplying the inverse of each column summation (W) as shown in 

Equations (4) and (5). The normalized judgment matrix (Anormal) identifies the weights of each criterion. 

After normalizing, the principal eigenvector (Ap) can be calculated by averaging across the rows shown in 

Equation (6). The 𝐴𝑝of the criteria is a ratio of the numerical values of the criteria that indicates an order 

of importance among the different criteria.  

 

𝑊 = ∑ 𝑎𝑖𝑗 = [𝑤1 ⋯ 𝑤𝑛]

𝑛

𝑗=1

 (4) 

𝐴𝑛𝑜𝑟𝑚𝑎𝑙 =

[
 
 
 
 
𝑎11

𝑤1

⋯
𝑎1𝑛

𝑤𝑛

⋮ ⋱ ⋮
𝑎𝑛1

𝑤1

⋯
𝑎𝑛𝑛

𝑤𝑛 ]
 
 
 
 

 

(5) 

 

𝐴𝑝 =

[
 
 
 
 
 
 1

𝑛
∙ ∑

𝑎1𝑗

𝑤1

𝑛

𝑗=1

⋮

1

𝑛
∙ ∑

𝑎𝑛𝑗

𝑤𝑛

𝑛

𝑗=1 ]
 
 
 
 
 
 

 

(6) 

 

2.3 Consistency Checking  

Human comparisons can be inaccurate and lead to inconsistency between pair-wise comparisons. A 

typical example of inconsistency in a pair-wise comparison is as follows: if criterion A has double the 

importance of criterion B, and criterion B has triple the importance of criteria C, then criterion A should 

have six times the importance of criteria C. However, if criterion A is determined to have only 4 times the 

importance of criterion B, this selection will lead to inconsistency. This inconsistency can lead to 

incorrect decisions. Therefore, Saaty and Vargas (2013) created a consistency test that can be performed 

by measuring the consistency ratio (CR) using the consistency index (CI) as shown in Equation (7). Table 

2 shows the random index (RI) of consistency for varying sizes of matrices. This approach estimates CR 

to evaluate the degree of inconsistency. If the CR of the matrix is less than 0.2, the pair-wise comparsion 
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is considered consistent. Otherwise, a new comparison matrix needs to be reconstructed for the pair-wise 

comparisons to meet the desired consistency, thereby leading to optimal decision-making. 

 

CR =
𝐶𝐼

𝑅𝐼
=

(
(𝜆𝑚𝑎𝑥 − 𝑛)

(𝑛 − 1)
)

𝑅𝐼
 

(7) 

where λmax is the maximum eigenvalue of matrix A, and n is the matrix size. 

Table 2.  Random index table (Saaty and Vargas 2013). 

n 1 2 3 4 5 6 7 8 9 10 

Random Index 0 0 0.58 0.90 1.12 1.24 1.32 1.41 1.45 1.49 

2.4 Aggregation of Final Priorities 

The alternative decision matrix, B, is an n × m real matrix, where n is the number of criteria and m is the 

number of alternatives as shown in Equation (8). The matrix B is normalized by multiplying the inverse of 

each raw summation of B as shown in Equations (9) and (10). 

 

𝐵 =  [
𝑏11 ⋯ 𝑏1𝑚

⋮ ⋱ ⋮
𝑏𝑛1 ⋯ 𝑏𝑛𝑚

] (8) 

𝑉 = ∑ 𝑏𝑖𝑗 =

𝑚

𝑖=1

 [

𝑣1

⋮
𝑣𝑛

] (9) 

𝐵𝑛𝑜𝑟𝑚𝑎𝑙 =

[
 
 
 
 
𝑏11

𝑣1

⋯
𝑏1𝑚

𝑣1

⋮ ⋱ ⋮
𝑏𝑛1

𝑣𝑛

⋯
𝑏𝑛𝑚

𝑣𝑛 ]
 
 
 
 

 (10) 

The decision priority vector, C, can be calculated by multipling each element of the normalized 

alternative decision matrix (Bnormal) as shown in Equation Error! Reference source not found.. Overall, 

the decision priority represents the ranking of each alternative in achieving the goal.  

𝐶  =(𝐴𝑝)
𝑇

 ∙𝐵𝑛𝑜𝑟𝑚𝑎𝑙 = [
1

𝑛
∙ ∑

𝑎1𝑗

𝑤1

𝑛
𝑗=1 ⋯

1

𝑛
∙ ∑

𝑎𝑛𝑗

𝑤𝑛

𝑛
𝑗=1 ] ∙

[
 
 
 
𝑏11

𝑣1
⋯

𝑏1𝑚

𝑣1

⋮ ⋱ ⋮
𝑏𝑛1

𝑣1
⋯

𝑏𝑛𝑚

𝑣𝑛 ]
 
 
 

 = [

𝑐1

⋮
𝑐𝑚

] (11) 
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3.0 Load Forecasting to Establish Target Peak Demand 

Under the most common billing rate structure, the utilities charge for peak demand. The demand is 

usually estimated as the highest rolling average over a prespecified interval (e.g., 15- or 30-minute) in the 

course of the billing period (e.g. a month). The peak demand usually lasts for a relatively short period of 

time. For example, when the cooling load requires the RTUs’ full capacity in the building, all RTUs may 

be ON simultaneously to meet the temperature set point. The ILC algorithm enables the equipment in the 

building to be coordinated and minimize the number of units running concurrently, thereby maintaining 

the target peak at an optimal level. However, if the target peak level is updated based on a fixed demand 

level only, the following situation could occur: all available curtailed loads are switched OFF during an 

event, which is regarded by the system as having a demand close to the maximum demand that could be 

expected. Furthermore, when the event ends, all curtailed loads are likely to turn ON simultaneously once 

normal control resumes. This type of peak caused is referred to as a secondary peak in demand (Hoffman 

1998). Therefore, it is very important to set the target peak demand at exactly the right level in order to 

only release the available load curtailed capacity at appropriate times. It will be much more acceptable if 

the peak demand control system has the built-in capability to automatically adjust the target peak level in 

a manner that will prevent secondary peaks. The curtailable loads can only influence demand levels over 

relatively short periods. Hence, the effect is mainly to level out fluctuations in the base load. If one can 

predict the base electrical load as well as the thermal load into the future over such a time period, one can 

proactively adjust the target peak demand level to a realistically attainable level, even before that level of 

demand has actually been reached by the system.  

To implement the above strategy, whole building energy (WBE) tool is used for optimal adjustment of the 

target peak level based on time-series forecasting of the overall load of the building (Katipamula et al. 

2003). The WBE method can estimate the expected consumption based on historical data and using bin 

method. A bin is an interval of values of the outdoor temperature, which explains the variation in energy 

consumption. The outdoor temperatures are grouped into bins of equal size and then the median of energy 

consumption data are assigned to each bin defined by the ranges of the outdoor temperature. WBE 

modeling is implemented using a set of structured query language database queries. The method uses 

hourly outdoor temperature as the dependent variable and building energy consumption as the 

independent variable. If the inputs are sub-hourly, they are automatically aggregated to hourly values. 

Users can define a “baseline” time period over which they wish to create a model predicting energy 

consumption. The expected energy consumption is computed using future weather forecast. The predicted 

energy consumption for an hour is the median of all of the values of energy consumption for conditions of 

outdoor temperature close to that of the actual measured value. Outdoor air temperatures within the bin-

size limits of the actual temperature determine whether a stored measurement is sufficiently close to be 

included in the calculation (e.g., within 5 F). For details about WBE refer to Katipamula et al. (2003). 

The capability of the WBE method to predict future demand based on 9 months of hourly baseline energy 

consumption data is shown in Figure 1. The figure compares the predicted average hourly demand with 

the actual average hourly demand for the building located on the PNNL campus. It can be shown that 

whole building electricity consumption based on prediction follows the actual consumption profile 

closely. The target peak for the ILC can be based on the WBE average demand prediction.  
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Figure 1. Comparison between the actual and predicted demand for the building on the PNNL campus 
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4.0 Intelligent Load Control Using AHP  

One key aspect of the ILC algorithm is its use of the AHP, which provides a method for prioritizing 

actions for the best results. AHP strategies can determine whether turning heat pumps OFF or ON in a 

certain sequence achieves optimum energy savings without harming the comfort of building occupants. 

The algorithm using AHP can be deployed to manage any homogeneous controllable loads (e.g., a group 

of RTUs or a group of lighting loads) that have similar inputs and criteria. Hetrogeneous loads (e.g., a 

mixture of RTUs and lighting loads) can also be prioritized, but they have to be seperated into 

homogeneous loads and the AHP applied recursively.  

4.1 Prioritization Criteria 

Any number of relevant criteria can be used to prioritize loads for curtailment to manage electricity 

consumption. To illustrate how the ILC process can be used to manage the total RTU energy 

consumption, six pre-determined criteria are used. Additional criteria can be easily added or existing 

criteria modified or removed.  

4.1.1 Criterion 1: RTU Power Consumption  

An estimate or actual measured consumption of the load (RTU) to be controlled is critical to meeting the 

targeted consumption goal. If measured consumption of the RTU (Powerrtu) is not available, an estimate 

based on the rated power consumption can be used. Assuming that the rated power consumption of the 

RTU is Prated, then the power consumed by RTU, Powerrtu, is as shown in Equation (11). 

  

𝑃𝑜𝑤𝑒𝑟𝑟𝑡𝑢 = {
𝑃𝑟𝑎𝑡𝑒𝑑      if 𝑠(𝑡) = 1 

0              if 𝑠(𝑡) = 0
} (11) 

where s(t) = 0 implies RTU is OFF and s(t) = 1 implies RTU is ON. 

4.1.2 Criterion 2: Number of RTU Curtailments 

The number of RTU curtailments (nrtu) represents the total number of curtailments an RTU has 

experienced during a fixed time period, which is typically 24 hours. For any RTU, if the number of 

curtailments reaches a certain number (> nrtu), the corresponding RTU can be excluded from ILC for that 

day. In general, cycling the RTUs too frequently may result in reduced operating lifespans. This condition 

may occur when the mass in the zone is small or the RTU is oversized, resulting in a quick change in the 

zone temperature.  

4.1.3 Criterion 3: Rate of Change in Zone Temperature  

Zone temperature (Tzone) represents the temperature condition of the zone served by an RTU. Differential 

Equations (12) and (13) describe the separate energy balance for the zone-cooling load, when considering 

zone temperature transients (Lee and Braun 2008). 
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𝐶𝑧,𝑒𝑓𝑓 ∙
Δ𝑇𝑧𝑜𝑛𝑒_𝛿

Δ𝑡
=  𝑄𝑏 − 𝑄𝑐  (12) 

∆ 𝑇𝑧𝑜𝑛𝑒_𝛿 =
(𝑄𝑏 − 𝑄𝑐)

𝐶𝑧,𝑒𝑓𝑓

∙ ∆𝑡 

(13) 

 

where Cz,eff is an effective zone thermal capacitance of the zone air and internal mass, Qc is the sensible 

cooling load, and Qb is the rate of instantaneous heat gain to the building air. Zone temperature difference 

(ΔTzone_δ) is assumed to vary linearly between the previous sampling time (t-δ) and the time of the last 

reading (t). If there is no cooling requirement, ΔTzone_δ should be negative for a given time period (Δt). 

Figure 2 shows the example of Tzone per Δt and zone cooling set point (Tcsp) in a cooling mode. ΔTzone_δ can 

be calculated as shown in Equation (14) for the cooling mode and Equation (15) for the heating mode. 

When the value of ΔTzone_δ is less than or equal to zero, the cooling requirement is less than zero (e.g., 

RTU turns off) or Qc is equal to Qb. Therefore, ΔTzone_δ should be equal to zero.  

 

Cooling mode:  ∆ 𝑇𝑧𝑜𝑛𝑒𝛿
= {

(𝑇𝑧𝑜𝑛𝑒,𝑡−𝛿 − 𝑇𝑧𝑜𝑛𝑒,𝑡)   𝑖𝑓 (𝑇𝑧𝑜𝑛𝑒,𝑡−𝛿 − 𝑇𝑧𝑜𝑛𝑒,𝑡) > 0

0                                     𝑖𝑓 (𝑇𝑧𝑜𝑛𝑒,𝑡−𝛿 − 𝑇𝑧𝑜𝑛𝑒,𝑡) < 0
} (14) 

Heating mode:  ∆ 𝑇𝑧𝑜𝑛𝑒𝛿
= {

(𝑇𝑧𝑜𝑛𝑒,𝑡 − 𝑇𝑧𝑜𝑛𝑒,𝑡−𝛿)   𝑖𝑓 (𝑇𝑧𝑜𝑛𝑒,𝑡 − 𝑇𝑧𝑜𝑛𝑒,𝑡−𝛿) > 0

0                                     𝑖𝑓 (𝑇𝑧𝑜𝑛𝑒,𝑡 − 𝑇𝑧𝑜𝑛𝑒,𝑡−𝛿) < 0
} (15) 

 

Figure 2.  Example of zone and set point temperature at each sampling period in cooling mode. 

4.1.4 Criterion 4: Deviation of Zone Temperature from Zone Set Point  

The thermostat for the RTU is a feedback controller. The controller relies on a measured zone 

temperature (Tzone), while adjusting the output signals to activate the necessary stages of heating or 

cooling when the zone is in the occupied mode. In the unoccupied mode, the zone thermostat activates the 
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necessary stages of cooling or heating, along with the RTU ventilation fan, when the zone temperature 

rises above the setback upper limit value or falls below the setback lower limit value. The heating set 

point (Thsp) and Tcsp represent the zone temperature threshold. The thermostat turns ON the RTU only 

when the zone temperature is either above the cooling set point or below the heating set point. Once the 

RTU is turned ON to provide cooling, it remains ON until the zone temperature falls 0.5°F below the set 

point to protect the RTU from short cycling. 

Figure 2 shows an example of temperature difference (ΔTzone-csp) between Tzone and Tcsp in the cooling 

mode. ΔTzone-csp reflects the occupant’s comfort status in the zone corresponding to each RTU. The input 

to the AHP is the inverse value of ΔTzone-csp and ΔTzone-hsp as shown in Equation (16) for the cooling mode, 

and Equation (17) for the heating mode, respectively. When the difference between Tzone and Tcsp (or Thsp) 

is lower than 0.1, ΔTzone-csp (or ΔTzone-hsp) should be set to 10. 

 

 Cooling mode:   𝛥𝑇𝑧𝑜𝑛𝑒−𝑐𝑠𝑝 = {
 

1

(𝑇𝑧𝑜𝑛𝑒 − 𝑇𝑐𝑠𝑝)
   𝑖𝑓 (𝑇𝑧𝑜𝑛𝑒 − 𝑇𝑐𝑠𝑝) > 0.1 

10                              𝑖𝑓 (𝑇𝑧𝑜𝑛𝑒 − 𝑇𝑐𝑠𝑝)  ≤ 0.1

}  (16) 

𝐻𝑒𝑎𝑡𝑖𝑛𝑔 𝑚𝑜𝑑𝑒:   𝛥𝑇𝑧𝑜𝑛𝑒−ℎ𝑠𝑝 = {
 

1

(𝑇ℎ𝑠𝑝 − 𝑇𝑧𝑜𝑛𝑒)
   𝑖𝑓 (𝑇ℎ𝑠𝑝 − 𝑇𝑧𝑜𝑛𝑒) > 0.1 

10                              𝑖𝑓 (𝑇ℎ𝑠𝑝 − 𝑇𝑧𝑜𝑛𝑒)  ≤ 0.1

} 

(17) 

 

4.1.5 Criterion 5: Room/Zone Type  

Room priority (Roomrtu) can be used to prioritize the rooms for curtailment of power consumption. Higher 

numerical values assigned to a given room is regarded as less important (more likely to be curtailed first) 

than rooms with lower numerical values. Users would set their own priority depending on the importance 

of the room (1: most important and 7: less important). Table 3 shows an example of AHP priority based 

on building room type. The Roomrtu weight is zero while heating or cooling operation is OFF. Where an 

RTU serves multiple spaces of varying importance, users will need to determine the Roomrtu as they see 

fit. 

Table 3.  Example of AHP priority based on room type. 

 

Director's 

Office Office 

Vacated 

Office 

Conference 

Room 

Mechanical 

Room 

Computer 

Lab Kitchen 

AHP Priority 1 3 7 5 7 1 3 

4.1.6 Criterion 6: Cooling/Heating Stage 

The modes/stages are allowed to control each RTU. For example, the selection between1 and 2 is feasible 

for controlling an RTU with two stages of compressor operation in the cooling mode. The OFF state is 

denoted as 0. Output stages of 1 and 2 of the RTU indicate the first and second cooling stages of the RTU, 

respectively. For heating mode, the selection between 1 and 2 is feasible for controlling compressor(s) 

and electric heater, separately. Second stage cooling would result in peak power consumption but for 

shorter operating periods, whereas first stage cooling would operate longer with a lower peak power 

consumption. Second stage heating (electric heater) will also lead to higher peak power consumption with 

shorter operating periods, than first stage heating (compressor). The ILC algorithm will choose second 
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stage for load curtailment if it can keep the zone temperature within the comfort band. The stage priority 

(RTUstg) can be determined using cooling stage and heating stage signals as shown in Table 4. 

Table 4.  Example of stage priority based on cooling/heating stages. 

 

First Cooling Stage 

(1st compressor) 

Second Cooling Stage 

(2nd compressor) 

First Heating Stage 

(Compressor[s]) 

Second Heating Stage 

(Electric heater) 

Stage Priority 

(RTUstg) 
1 3 1 9 

4.2 Additional Control Inputs for Load Curtailment 

A number of additional parameters, described in the following sections, are needed to prioritize the loads 

for curtailment.  

4.2.1 Temperature Offset Value 

If the building electric energy consumption is approaching the targeted peak demand, some or all of the 

RTUs that are currently running have to be curtailed. In most cases, direct control of the RTUs is not 

possible; therefore, an alternative approach is used. In the alternative approach, the set points are offset by 

a fixed value, which will result in the RTU turning OFF. After the event is over or if the next 

prioritization results in a different set of RTUs on the top, the set points will be restored to normal values. 

The temperature offset is set to 1°F for the second stage and 2°F for the first stage as default settings. The 

offset value can be adjusted depending on the cooling/heating load served by each RTU.   

4.2.2 Curtailment Time Period 

The ILC algorithm manages RTU consumption by cycling the units ON or OFF in a building to prevent 

the peak demand from exceeding the targeted demand. When the event has ended and the set points for 

curtailed units are restored to normal, most RTUs are likely to be turned ON. This can result in an 

unwanted peak demand that can be equal to or even higher than the targeted peak demand value. It is 

important to manage the targeted peak demand at exactly the right level, in order to release the available 

loads currently under curtailment at appropriate times. For this reason, the ILC process has an option to 

specify the curtailment time period. When an RTU is curtailed, it will remain curtailed for the specified 

duration. The curtailment time period is set to 15-minutes as a default setting. The optimal ILC time 

period that balances peak demand targets, occupant discomfort, and RTU set point recovery efforts are 

analyzed in Section 6.2 based on a virtual control test bed.   

4.2.3 Target Peak Demand 

The building operator can determine the target peak demand, and it can vary hourly, daily, monthly or 

seasonally. For efficient operation of ILC, it is necessary to accurately model the expected behavior of the 

sheddable loads. The target peak demand level can be adjusted using the WBE method as previously 

mentioned in Section 3. The impact of target peak demamd is presented in Section 6.2 based on a virtual 

control test bed.  
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4.2.4 Minimum RTU Runtime  

Cycling the RTU compressor ON or OFF controls RTU operation. Each RTU has a finite lifespan that 

may be shortened; therefore, RTU manufacturers ensure that the compressors are not cycled frequently. In 

addition to the safety features built into the RTU, the ILC algorithm ensures that the compressors are not 

cycled frequently by using a RTU runtime clock. The 5-minute runtime is used as a default. This often 

means that the RTU is excluded from any priority decision-making until both internal (RTU timers) and 

external timer values are met.  

4.2.5 RTU Operating Mode (Heating or Cooling) 

The RTU operating mode represents the heating/cooling status of the RTU. This value is used as a 

reference input to calculate three criteria values: (1) RTUstg,, (2) ΔTzone-csp or ΔTzone-hsp, and (3) ΔTzone_δ.   

4.2.6 Maximum Curtailed Number  

Frequent compressor ON/OFF switching can reduce the life of the compressor and deteriorate the 

performance of the RTU. As the number of curtailments reaches the maximum curtailed number, the 

corresponding RTU can be excluded from ILC. The maximum curtailed number for a day is set at 50 (per 

RTU) as a default setting. 
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5.0 Intelligent Load Control Process 

The primary goal of the ILC process is to prioritize controllable loads (e.g., RTUs) that can be curtailed to 

keep a building’s dynamic electric demand from exceeding the targeted demand chosen by the building/ 

facility operations staff. Figure 3 shows that the AHP has three major elements in the decision model: the 

goal, the criteria, and the alternatives. The AHP comprises relative weights of the decision criteria and the 

relative priorities of alternatives. The goal of the ILC process is to generate the dynamic load curtailment 

priority for controlling the building’s peak demand to keep from exceeding the target. The intermediate-

level consists of five different decision criteria (user selected) as explained below. The lowest level 

consists of seven different decision alternatives, which are different RTUs that are coordinated to curtail 

their energy use. Making load curtailment decisions requires comparing alternatives with respect to a set 

of decision criteria. In this section, an application of the ILC process to manage the peak electricity 

consumption of a building that has a set of RTUs is explained in detail.  

 

Figure 3.  AHP model for managing building peak demand using RTU loads 

5.1 Preprocessing Based on Exponential Moving Average Method 

The exponential moving average (EMA) method is one of the approaches used for load forecasting, as 

shown in Equation (18). The widespread use of the EMA method in automated applications, such as 

inventory control, led Taylor (2003) to consider its use for forecasting online electricity demand. The 

EMA method is used to predict future demand for ILC input. The EMA differs from a moving average by 

assigning relatively more weight to most recent observation. It is slightly more responsive to changes 

occurring in the recent observation. The ILC algorithm can therefore maintain a target level that equals 

the average predicted total demand level over the specified forecasting window. The value of α is relative 

to the period for which the forecast is computed as shown in Equation (19). The value of α must be 

between 0 and 1. A higher value of α is appropriate when the coefficients are shifting rapidly and a lower 

value when the coefficients are shifting more slowly.  

 

𝐹𝑁 =  𝛼 ∙ 𝐷𝑁 + (1 − 𝛼) ∙  𝐹𝑁−1 =  𝛼 ∙ 𝐷𝑁 + (1 − 𝛼) ∙  (𝛼 ∙ 𝐷𝑁−1 + (1 − 𝛼) ∙  𝐹𝑁−2)
=  𝛼 ∙ 𝐷𝑁 + (1 − 𝛼) ∙   𝛼 ∙ 𝐷𝑁−1 + (1 − 𝛼)2 ∙ 𝛼 ∙ 𝐷𝑁−2 + ⋯ 

(18) 

𝛼 = 
2

(𝑁 + 1)
 (19) 
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where DN = new observation or actual value of series, 

 FN = the predicted based load, 

 FN-1 = last estimate of the observation, 

 N = the number of data points, and 

 α = smoothing constant for the data.  

Before initiating ILC, the following parameters should be determined: 1) current demand estimate based 

on EMA, 2) target demand level until the end of the demand period, and 3) the demand that could be shed 

by switching off the RTU(s). The current demand estimate is subtracted from the target peak level to 

obtain the required demand level to be shed during the remainder of demand period. If the subtracted 

value is positive, the ILC algorithm will identify RTUs for curtailment based on a priority list allocated to 

each RTUs. This process will continue either until a sufficient number of RTUs have been selected for 

achieving the goal, or until all RTUs have been selected for curtailment. For example, the target demand 

has been selected to be 30 kW, the current demand estimate of RTUs is 36 kW, and the demand to be 

shed is 6 kW.   

5.2 RTU Prioritization Based on AHP 

This section describes how the RTU prioritization list is generated. 

5.2.1 Evaluation of Each Criterion  

Figure 4 shows an example of a pair-wise comparsion matrix for the ILC process. The pair-wise 

comparison is conducted to determine qualitatively which criteria are more important and assign to each 

criterion a qualitative weight. The defined levels of importance are represented by numbers. Each number 

represents a different level of importance. For example, if “ΔTzone_δ” is determined to have greater 

importance than “ncurt”, a value of “4” is assigned to this comparison (“x” in a drop-down box between 1 

and 9 on the right side). The corresponding reciprocal value is assigned to the reverse comparison 

between the criteria. Thus, the value of “ncurt” compared to “ΔTzone_δ” would be “1/4” to represent its 

relative importance. Although the table below shows five criteria, additional criteria can be easily added 

or a criterion can be replaced with another more important one. The ILC deployment includes a template 

(excel file) for a pair-wise comparison table. The operation staff can change the level of importance of 

criteria in the pair-wise comparison template (excel file) according to their own preferences. Also, the 

criteria in the pair-wise comparison template can be replaced or added/updated by a building operator’s 

selective preferences (e.g., RTU energy efficiency).   

 

Figure 4.  Example of pair-wise comparison of ILC decision criteria 
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5.2.2 Calculation of Criteria Priority Vector  

Table 5 shows the example of matrix Anormal and eigenvector AP of the criteria. The Anormal shows the 

relative weight for each evaluation criterion according to the pair-wise comparisons of the load priority 

criteria. Because A is normalized by W in Equation (5), the sum of each column in Anormal should be 1. The 

AP vector shows the ratios of the numerical values that indicate the strength of each criterion’s 

preferences. The priority vector indicates the rankings among the criteria. In Table 5, the most important 

criterion for prioritrizing the curtailable loads is ΔTzone_sp , followed by ΔTzone_δ, Powerrtu, nrtu, Roomrtu, and 

RTUstage. The priority vector also shows the relative weights of the criteria. ΔTzone_sp is 1.6 times more 

important than ΔTzone_δ. The CR value calculated using Equation (7) is 0.04, which is less than 0.1; 

therefore, the eigenvector AP of criteria are acceptable.  

Table 5.  Example of normalized judgment matrix and eigenvector of criteria 

Criterion 

Anormal 
AP 

nrtu Tzone at t-δ Tzone at t Roomrtu Powerrtu RTUstage 

nrtu 0.05 0.04 0.07 0.03 0.07 0.05 0.054 

ΔTzone_δ 0.22 0.15 0.19 0.19 0.15 0.12 0.177 

Roomrtu 0.03 0.03 0.04 0.02 0.05 0.04 0.033 

Powerrtu 0.11 0.05 0.15 0.06 0.07 0.05 0.088 

ΔTzone_sp 0.32 0.44 0.30 0.38 0.44 0.49 0.376 

RTUstage 0.27 0.29 0.26 0.32 0.22 0.25 0.272 

5.2.3 Calculation of Alternative Matrix  

When the alternative matrix is calculated to curtail RTUs, the load-shedding candidates can be 

determined based on the ON status of the RTUs. Table 6 shows the example of an RTU input data set of 

criteria to make the alternative matrix. The input data include the two temperature measurements (Tzone at t-

δ and Tzone at t), Tsp nrtu, Roomrtu, Powerrtu, and RTUstage corresponding to each RTU. 

Table 6.  Example of RTU input data for the alternative decision matrix 

Criterion Unit RTU-1 RTU-2 RTU-3 RTU-4 RTU-5 RTU-6 RTU-7 

nrtu [ea] 1 1 1 1 1 1 2 

Tzone at t-δ °F 76.17 74.85 72.71 75.59 74.53 75.01 76.17 

Tzone at t °F 76.21 73.51 71.21 74.88 71.51 74.07 76.21 

Roomrtu [-] Office 
Director's 

Office 
Kitchen Office 

Computer 

Lab 

Conference 

Room 
Office 

Powerrtu [kW] 7.2 1.8 3.2 6.9 3.5 2 7.4 

Tsp [°F] 75 72 71 72 71 73 73 

RTUstage [ea] 1 1 1 1 1 1 1 

Table 7 shows the example of matrix Bnormal, which includes the weight of each criterion associated with 

each alternative load (RTUs) according to the pair-wise comparisons and the input data. The comparison 

reflects the intensity as indicated by the ratios of the numerical values that preserve the strength of 

alternative preferences.  
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Table 7.  Example of the alternative decision matrix of RTUs 

Criterion RTU-1 RTU-2 RTU-3 RTU-4 RTU-5 RTU-6 RTU-7 

nrtu 0.11 0.11 0.00 0.22 0.22 0.22 0.11 

ΔTzone_δ 0.00 0.18 0.20 0.09 0.40 0.13 0.00 

Roomrtu 0.16 0.05 0.16 0.16 0.05 0.26 0.16 

Powerrtu 0.23 0.06 0.10 0.22 0.11 0.06 0.23 

ΔTzone_sp 0.27 0.21 0.00 0.11 0.00 0.30 0.10 

RTUstage 0.14 0.14 0.14 0.14 0.14 0.14 0.14 

5.2.4 Calculation of Decision Priority Vector  

The example of decision priority vector C of alternatives can be calculated by multiplying eigenvector, 

Ap, and matrix, Bnormal, thus determining dynamic prioritization of the loads. As can be seen in Table 8, the 

ILC process prioritizes the RTUs for curtailment (priority of 1 implies that it will be curtailed first). Once 

the loads are prioritized for curtailment, the number of RTUs that need to be curtailed to meet the peak 

demand can be determined based on their current power consumption.  

Table 8.  Example of the decision priority vector for load curtailment 

 RTU-1 RTU-2 RTU-3 RTU-4 RTU-5 RTU-6 RTU-7 

Priority Weight 0.17 0.16 0.09 0.13 0.13 0.20 0.11 

Priority 2 3 7 5 4 1 6 

5.2.5 Load Control Based on the Decision Priority Vectors 

Table 9 shows the example of the current power consumption of each of the seven RTUs and the current 

demand estimate for this example data set is 36 kW, as previously mentioned in Section 5.1. Estimation 

of the expected power contribution of each RTU is obtained from a Powerrtu describing the rated input 

power consumption because the usage of the individual RTUs is not measured directly on permanent 

basis. With the RTU switch on, it is assumed that the thermal load is exactly matched by the rated power 

consumption of the RTU. Based on a target demand of 30 kW as described earlier in Section 5.1, 

curtailing RTU-6 and RTU-1 (based on the decision priority shown in Table 8) will bring the total 

consumption below 30 kW.  

The temperature offset was used to raise the current set point of selected RTUs during the period of 

curtailment. The temperature offset raises the thermostat set point by a fixed amount. For example, the 

curtailment can be implemented by raising the zone set point from 72°F to 76°F, as shown in Table 9. As 

the set points are raised, the compressors of the RTUs will be turned off until 1) the zone temperature 

exceeds the set point and 2) the curtailment time period of ILC ends.  

When initiating RTU shutdown, the curtailment time period for which the RTUs can be kept in the OFF 

state, starting from the current state, is determined. When an RTU is curtailed for a part of the curtailment 

time, it is allowed to come on again when it reaches its maximum allowed temperature. If the estimated 

demand is exceeded during the curtailment time period, the ILC algorithm will identify additional RTUs 

based on priority vector, and the curtailment time period for all curtailed RTUs will be extended. When 

ending the curtailment time period, the ILC algorithm will identify the RTUs that have been curtailed and 

that could be switched on by decreasing the zone set point from 76°F to 72°F.   
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Table 9.  Example of RTU set points based on the decision priority vector 

 RTU-1 RTU-2 RTU-3 RTU-4 RTU-5 RTU-6 RTU-7 

RTU Power kW 6.8 2.8 5.4 6.8 5.4 2.8 6.8 

Tsp °F 76 72 72 72 72 76 72 
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6.0 Simulation Results and Discussion  

A small commercial building simulation model was used to evaluate and validate the ILC process. Kim et 

al. (2015) developed a three-zone building for simulating the dynamic indoor environments and building 

envelopes using a reduced-order coupled computational fluid dynamics model. The simulation model was 

validated by using measurements from the field site. For detailed the description and validation of the 

simulation model, please refer to Kim et al. (2012 and 2015). Table 10 shows the summary of building 

simulation conditions. A 1-month simulation was performed to study the potential for reducing the peak 

demand using ILC. The peak demand is assumed to be the highest average power consumption measured 

in a rolling 15-minute period. The weather data from 2014 TMY3 (Typical Meteorological Year) was 

used for the simulations.  

Table 10.  Major building simulation parameters. 

Input Condition 

Simulation time periods One month from July 15 to August 14 

Outdoor air temperature data TMY3 

Building type/location A restaurant/Philadelphia 

Building size 70 ft. width/65 ft. depth/11 ft. height 

Building occupancy time 9:30 a.m. to 10:00 p.m. 

Normal occupied/unoccupied set points 71.5/75.0 [°F] 

AHP occupied set point 80.0 [°F] 

Thermostat temperature dead band ± 0.5°F 

RTU compressor minimum run time 5 minute 

Thermostat delay time 5 minute 

Four RTUs serve the open-spaced (without walled-in spaces) building. The room/zone priority is the 

same for all RTUs because they serve an open space. RTU-1 and RTU-3 serve the dining area and RTU-2 

and RTU-4 serve the wine bar. The supply air fans of all RTUs are ON continuously when the building is 

occupied. RTU-1 has two refrigerant circuits with a nominal cooling capacity of 15 tons. Each of the two 

compressors is connected to a separate condenser. The other three RTUs have a 4-ton cooling capacity 

with one refrigerant circuit each. The coefficient of performance of RTU-1 is approximately 35% higher 

than the others. All RTUs are controlled by a thermostat with a fixed occupied set point of 71.5°F and a 

dead band of ± 0.5°F. The second compressor of RTU-1 turns ON when the space temperature is 1.0°F 

above its cooling set point. To avoid short cycling of the RTU compressors, the RTU is run for some 

minimum period before it is turned OFF. After a change in thermostat set point, the thermostat typically 

responds with a time delay. The RTU compressor minimum run time and thermostat delay time are set at 

5-minutes each. After the set points are changed, there is a delay—the thermostat delay time—before the 

thermostat applies the change.    

The zone temperature set point is increased to turn OFF the corresponding RTU that is chosen by the 

assigned priority order. When the load curtailment ends, the set points are returned to their original 

values. For RTUs that have a single compressor, the set point during curtailment is 75.6°F. The multi-

stage RTUs are considered multiple single-stage RTUs. The RTU-1 is considered to be two separate 

single-stage RTUs. To turn OFF the second compressor of RTU-1, the set point is set to the current zone 

temperature served by RTU-1. When an RTU is OFF during prioritization, it is excluded from the priority 
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decision. If an RTU is turned OFF by the ILC process and the zone temperature corresponding to that 

RTU exceeds the new set point, then the RTU is allowed to resume its operation.  

6.1 Case Study: Analysis and Validation of Intelligent Load 
Curtailment with Different Curtailment Time Periods  

This section discusses the curtailment time period related to its influence on the results of the process. 

Figure 5 shows how the time period affects peak demand management. The targeted peak demand is set 

to 30 kW and it roughly corresponds to 85% of the base case peak demand. The time period refers to the 

minimum time the unit remains OFF to meet the target. Three different time periods—5, 15, and 30-

minutes—were considered to evaluate the effect of the time period on peak demand management. When 

the electric power is higher than 30 kW, the RTUs are curtailed using the priority order to reduce the 

demand by 6 kW because the base peak is 36 kW. The ILC process increases the zone set point of the 

RTUs selected for curtailment, which results in those units turning OFF. The normal zone set points are 

restored after the time period ends. For example, if the ILC time period is 15-minutes, the curtailed RTU 

will remain OFF for 15-minutes. However, during this 15-minute period, if the zone set point exceeds the 

new zone set point, the unit will be released from curtailment and allowed to run. The short time periods 

(upper right graph in Figure 5Error! Reference source not found.) can lead to more frequent cycling of 

the RTUs but can result in less discomfort to the occupants. The long time period (lower right graph in 

Figure 5) prevents short cycling but may result in more occupant discomfort.  
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Figure 5.  Electricity consumption profile under different ILC time periods 

Weekly electricity consumption profiles for different time periods are shown in Figure 6. The week 

between July 25 and August 2 was chosen because it was one of the hottest weeks of the year. The blue 

line (in Figure 6) represents the electric consumption profile, the top of the yellow shaded area represents 

the peak consumption with conventional operations, and the bottom of yellow shaded area indicates the 

new demand target with ILC in operation. With conventional control, the peak demand is approximately 

36 kW. The goal of the ILC process is to maintain the peak under 30 kW. With the ILC time period of 5-

minutes, the peak demand at times is higher than 30 kW. When ILC is operated using 15- and 20-minute 

time periods, the process is able to achieve the goal at all times. The peak demand is much smoother, with 

fewer fluctuations, for higher time periods. The ILC operation using 15- and 30-minute time periods can 

also prevent the “rebound” that occurs during equipment recovery, compared to ILC using 5-minute time 

periods. 
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Figure 6.  Weekly electricity consumption profiles under different ILC time periods 

Because the zone set points are raised during ILC operation, the zone temperatures will be typically 

higher than normal in the cooling mode and lower than normal in the heating mode. Figure 7 shows how 

ILC affects the zone temperature with the varying ILC time periods. The edges of the yellow shaded area 

represent the upper and lower bounds of comfort in the cooling mode. The occupied and unoccupied 

cooling set points are 71.6°F (horizontal red line) and 75.6°F, respectively. The black line represents the 

unoccupied zone temperature, whereas the occupied zone temperature is marked with a solid color line. 

When the building is unoccupied, the temperature set point is increased to a higher value leading to an 

increase in the zone temperature. To manage the peak demand target, the ILC process raises the set point 

of the RTUs based on the priority list. Although the temperature difference between the conventional 

(uncontrolled) and ILC approaches increases with the time periods, the zone temperatures for all four 

RTUs remained below the upper comfort temperature boundary during the occupied period. For example, 

the deviation of zone temperatures from the normal set point with the ILC time period of 30 minutes is 
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between 2°F and 3°F higher. The space temperatures show values that drop to as low as 65°F during the 

nighttime. The simulation model was developed based on linearization on the hot summer days. 

Therefore, the model could have unrealistic behavior if the system operates too far away from the 

linearized conditions (Kim et al. 2015). Overall, the ILC algorithm using 15- and 30-minute time periods 

can reduce the peak loads by controlling the RTUs, while still maintaining reasonable thermal comfort. 

 

Figure 7.  Zone temperature profiles for different ILC time periods 

 

Table 11 shows the maximum and average temperature for each RTU during the occupied time period 

during a 1-month operating period. As seen from the data, the ILC process did not result in a significant 
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zone temperature rise when the units were curtailed to achieve the peak demand goal. For example, the 

ILC process using a time period of 30-minutes showed an average and maximum temperature rise of 

0.4°F and 1.9°F, respectively, compared to the conventional control during the occupied period. Overall, 

the ILC process using 15- and 30-minute time periods can maintain occupant comfort while successfully 

limiting peak demand. 

Table 11.  Comparison of zone temperatures under different ILC time periods 

 
Maximum Zone Temperature (°F) Average Zone Temperature (°F) 

 

Normal 

ILC Time Period (minutes) 

Normal 

ILC Time Period (minutes) 

5 15 30 5 15 30 

RTU-1 73.5 73.6 74.7 75.5 72.6 72.6 72.6 72.8 

RTU-2 72.6 72.9 73.4 74.8 71.8 72.1 72.1 72.3 

RTU-3 73.1 73.1 73.1 74.3 71.8 71.9 71.9 71.9 

RTU-4 73.8 74.0 74.5 75.9 72.7 73.0 73.3 73.4 

Average 73.3 73.4 73.9 75.2 72.2 72.4 72.4 72.6 

Table 12 shows the RTU ON-OFF cycles and compressor runtimes during a one-month operating period. 

The results show that RTU-1 with stage 2, RTU-2, and RTU-3 cycled more often to meet the targeted 

peak demand under the ILC than under normal control. The number of ON-OFF cycles of RTU-1 with 

stage 1 and RTU-4 were almost constant regardless of the ILC time period. As the ILC time period 

decreases, there is an increase in the on/off cycling and a decrease in the runtime of the RTUs. For 

example, the ILC using the 5-minute time period results in 4% fewer run hours and 27% more ON-OFF 

cycling compared to normal control. As the ILC time period increased, the ON-OFF cycling rates were 

significantly reduced. For instance, ILC using the 30-minute time period results in almost 6% fewer run 

hours and 12% more ON-OFF cycling compared to normal control. The RTU-1 has two refrigerant 

circuits, which allow modulation of the compressor staging and result in less ON-OFF cycling. The result 

indicates that the ILC process can provide modest energy savings while managing the peak with a small 

impact on the thermal comfort. Therefore, the ILC process can provide cost savings derived from both 

reductions in energy use and peak charges. Overall, the ILC process using the 15- and 30-minute time 

periods should be considered.  

Table 12.  RTU ON-OFF cycles and run times under different ILC time periods 

 
The Number of ON-OFF Cycles  Run Time (hours) 

Time Period Normal 

ILC Time Period (minutes) 

Normal 

ILC Time Period (minutes) 

5 15 30 5 15 30 

RTU-1-1 387 381 383 381 243.8 248.5 249.4 250.2 

RTU-1-2 78 106 114 120 8.7 10.3 11.9 11.3 

RTU-2 272 416 324 316 127.5 118.2 118.2 119.4 

RTU-3 36 76 88 72 64.2 40.3 32.6 18.0 

RTU-4 109 141 125 101 381.4 378.8 378.7 380.7 

Total 882 1120 1034 990 826 796 791 780 

Comparisons Baseline 27% ↑ 17% ↑ 12% ↑ Baseline 4% ↓ 4% ↓ 6% ↓ 
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6.1.1 Case Study: Analysis and Validation of Intelligent Load Curtailment with 
Different Target Peak Demand Values  

This section discusses the simulation results that demonstrate how the target peak demand control affects 

RTU ON/OFF control and thermal comfort. The ILC algorithm has the capability to adjust the target peak 

demand that needs to be shed. To efficiently operate the ILC algorithm, the target level for peaks in 

demand should be optimally chosen. For example, if the building operator adjusts the target peak demand 

to a value that is too high, occupant comfort may be affected because significant RTUs will be 

automatically adjusted to reduced operations. Furthermore, secondary peaks in demand may be caused if 

the initial target level for peak demand is not optimally chosen. To analyze the impact of target peak level 

in ILC, three different target peak demand values of 30, 27, and 25 kW were considered. The runtime 

interval was set to 15-minutes. The proposed control strategy was implemented to find an optimal trade-

off between conflicting objectives of demand savings and comfort level in a simulation test bed. The 

impact of different target peak demand values were evaluated using simulation results.   

Figure 8 shows the continuous weekly profiles of electrical demand for different target peak demand 

values. ILC achieved 19, 28, and 33% demand reduction ratios compared to conventional control. For all 

cases, ILC was able to manage the peak load reduction below target demand. For the target of 27 kW, 

ILC maintains the zone temperature within the comfort range but it switches more frequently than 

conventional control. For the target peak demand value of 25 kW, significant cycling occurred at the 

occupied time that peak demand occurred. Significant cycling occurred because of small cooling 

capacities for the time being compared to the cooling loads in the building. 

 

Figure 8.  Electric demands under different target peak demand values 
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Figure 9 shows the weekly zone temperature profiles under conventional and ILC operation with different 

target peak demand values. As the target peak demand value is reduced, significant gaps occur between 

the set point and zone temperatures and the spatial variation of temperatures between the zones. For target 

peak demand values of 27 and 30 kW, the zone temperature was maintained within the comfort limit 

during the occupied period. The ILC with a target of 25 kW showed a significant occupied temperature 

rise for the curtailed RTU during the occupied time period. Temperatures for target 25 kW are around 5 

°F to 6 °F higher than temperatures for target 30 kW during the occupied time. Compared to conventional 

control, the zone temperatures for RTU-1, RTU-2, and RTU-4 increased more quickly and approached 

80 °F for a short period of time under ILC. ILC to keep the peak demand below 25 kW would turn OFF a 

relatively large number of RTUs. Overall, the comfort problems occurred because the target level for 

peak demand was not optimally chosen.  

 

Figure 9.  Zone temperature profile under different target peak demand values 

Table 13 shows the maximum and average temperature for each RTU during the occupancy time period 

for 1 month. The ILC with target peak demand values of 27 and 25 kW showed a maximum temperature 

rise of 3.7°F and 6.3°F, respectively, compared to the conventional control during the occupied time 

period. For the target of 25 kW, because of low utilization of RTUs for ILC, zone temperatures exceed 

the comfort temperature bounds. The zone temperature could not be maintained without using a large-

capacity RTU-1. Although the maximum zone temperature was approaching 80°F at the end of the peak 
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period, the average occupied zone temperature was 75°F during these hot days. As a result, it was 

demonstrated how the prediction of future demand can be used to maintain the target peak at an optimal 

level without harming the comfort of building occupants.  

Table 13.  Comparison of zone temperatures under different target peak demand 

 
Maximum Zone Temperature (°F) Average Zone Temperature (°F) 

Time Period No Demand 

Demand 

30 kW 

Demand  

27 kW 

Demand 

25 kW No Demand 

Demand 

30 kW 

Demand 

27 kW 

Demand 

25 kW 

RTU-1 73.5 74.7 77.8 80.4 72.6 72.6 73.0 76.4 

RTU-2 72.6 73.4 77.0 79.9 71.8 72.1 73.0 75.9 

RTU-3 73.1 73.1 75.2 77.1 71.8 71.9 71.9 74.2 

RTU-4 73.8 74.5 78.0 80.9 72.7 73.0 74.0 74.4 

Average 73.3 73.9 77.0 79.6 72.2 72.4 73.0 75.2 

Table 14 shows the RTU ON-OFF cycles and compressor runtime (hours) under different target peak 

demand values. As the target peak demand value decreases, then the number of ON/OFF cycling 

increases and the runtime of the RTUs decrease. For the number of ON/OFF cycles, ILC with a target 

peak demand value of 25 kW is three times higher than the conventional control. The reduction in the 

RTUs runtime due to ILC with a target peak demand value of 27 kW is 11% of the conventional control. 

Therefore, the ILC can provide an annual energy cost savings in both electrical consumption and peak 

demand charges.  

Table 14.  RTU ON-OFF cycles and runtime under different target peak demand values 

 
Number of On-Off Cycles during One Month Runtime (hours) during One Month 

Time Period 

No 

Demand 

Demand 

30 kW 

Demand  

27 kW 

Demand 

25 kW No Demand 

Demand 

30 kW 

Demand  

27 kW 

Demand 

25 kW 

RTU-1-1 387 383 417 577 243.8 249.4 244.8 212.1 

RTU-1-2 78 114 302 480 8.7 11.9 15.3 20.6 

RTU-2 272 324 526 656 127.5 118.2 82.3 87.0 

RTU-3 36 88 234 422 64.2 32.6 29.4 26.4 

RTU-4 109 125 249 405 381.4 378.7 359.5 327.4 

Total 882 1034 1728 2540 4128 3954 3657 3368 

Comparisons Baseline 17% ↑ 96% ↑ 188% ↑ Baseline 4% ↓ 11% ↓ 18% ↓ 
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7.0 Discussion of Field Test Results 

The ILC algorithm (also known as v-agent when deployed on VOLTTRON platform) using the 

VOLTTRON platform was demonstrated at a PNNL mechanical shop building that included office space 

in Richland, Washington. The objective of the experimental demonstration was to minimize the peak 

demand over a demand period of 30-minutes during the specific month. The system characteristics are 

summarized in Section 7.1 and comparisons between operating 1) with ILC and 2) without ILC are 

provided in Section 7.2. Although the ILC agent based on the VOLTTRON platform was implemented 

for 7 months, only selected data are presented in the comparisons.   

Figure 10 shows the external view of the building located on PNNL campus. Ten heat pumps are located 

on the roof of the building, as shown in Figure 11. The 10 heat pump systems serve three different areas 

in the building. Heat pumps 1a, 1b, 2, 7, and 14 serve the office area, heat pumps 4, 5, 6, and 8 serve the 

shop, and heat pump 3 serves kitchen area. As shown in Figure 11, the heat pumps with smaller capacities 

serve the office area, while those with larger capacities serve the shop. 

Implemented earlier this year, ILC began controlling the operation of multiple heat pumps serving offices 

and other work spaces. The deployment site used the building automation system and had access to key 

variables and control such as zone temperature, set point, and the compressor states of the heat pumps. 

Some integration development and testing was performed to obtain the desired communications 

functionality between VOLTTRON running the ILC agent (coded in Python) and the building automation 

system. After that, additional functional testing of the ILC algorithm was performed to verify safe 

operation. For example, initially some heat pumps failed to change the heating temperature set point but 

this was because the set point was set for read-only mode. After initial testing, the setting was changed to 

write/read mode. 

 

Figure 10.  External view of the building on 

PNNL campus 

 

Figure 11.  Location of heat pump in the building on the 

PNNL campus 

The specifications of the heat pumps in the building are given in Table 15. Three heat pumps, named 1A, 

1B, and 2, have one refrigerant circuit that has a nominal cooling capacity of 3 tons each and an electric 

heater capacity of 7.5 kW. Three heat pumps named HP-3, HP-4, and HP-7, have two compressors that 

have a nominal cooling capacity of 7.5 tons each and an electric heater capacity of 14 kW. Two heat 

pumps, named HP-6 and HP-8, have a nominal capacity of 25 tons each with an electric heater capacity of 

72 kW and 20 tons each with an electric heater capacity of 54 kW using two circuits with two 

compressors and two condenser fans. Two heat pumps, named HP-5 and HP-14 have a nominal capacity 
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of 4 tons each with an electric heater capacity of 13 kW and 3 tons each without an electric heater. For 

testing, we controlled the compressor and electronic heater of the heat pumps separately, as if they are 

two different systems. For example, we could leave the compressor ON, while the electric heater was 

turned OFF. This approach would have given us 19 testing systems. ILC would then control the 19 

systems to manage peak demand while still maintaining reasonable thermal comfort. 

Table 15.  Details of the heat pumps 

 

Heat Pump Unit 

Capacity 

[tons] 

Electric Heater Capacity 

[kW] 

Compressor 

[ea] Room Type 

1 HP-1A 2 7.5 1 Manager Office 

2 HP-1B 2 7.5 1 Office 

3 HP-2 2 7.5 1 Manager Office 

4 HP-3 7.5 14 2 Lobby 

5 HP-4 7.5 14 2 Shop 

6 HP-5 4 13 1 Shop 

7 HP-6 25 72 2 Shop & Office 

8 HP-7 7.5 14 2 Office 

9 HP-8 20 54 2 Shop 

10 HP-14 3 - 1 Office 

7.1 Field Test Results for ILC  

Field test results indicated that ILC managed the peak demand within an acceptable target peak level 

based on WBE prediction, as well as zone temperatures reflecting the comfort status of building 

occupants. Because weather and internal gains keep changing, the performance validation of the ILC 

algorithm is difficult in practice. To compare the results with and without ILC running, the ILC algorithm 

was run one day and normal operations the following day. 

7.1.1 Field Test Results for ILC during the Heating Season  

Figure 12 shows the sample results under (a) no ILC (March 14) and (b) with ILC (March 15). The blue, 

red, purple, and black lines indicate an average 30-minute rolling window of target demand, outdoor 

temperature, and ILC run signal, respectively. The target demand is determined at 145 kW. For the peak 

demand, the measured power data were summed and a moving average method with a 30-minute time 

interval was used in calculating the electric demand. The maximum peak demand, 180 kW, occurred 

during the morning warm-up period, between 6 a.m. and 8 a.m., as shown in Figure 12a.  

Figure 12b shows the ILC test results from March 15. When building energy consumption peaked in the 

morning, ILC quickly prioritized heat pump operations, shutting down some units while running others. 

There were three possible periods when the building 30-minute average peak could have exceed the target 

peak demand level. The ILC algorithm controlled the heat pump systems to avoid exceeding the peak 

demand level. Overall, the results show that the ILC algorithm was able to control the system and keep it 

under the demand level of 145 kW. Results show the ILC algorithm achieved about a 20% peak demand 

reduction compared to the results under no ILC operations.  



 

29 

 

 

 

 
(a) Sample result under no ILC (March 14) 

 
(b) Sample result under ILC (March 15) 

Figure 12.  Electric demand and outdoor temperature profiles during the heating season 

Figure 13 shows example temperature and heat pump status signal profiles derived under ILC on March 

15. The blue line represents the zone temperature, the green line is the set point of heat pump system, and 

the red line is the operation status of the heat pump. Both heat pumps have a compressor unit with electric 

heaters. Output stages of heat pump systems is shown on the second y-axis indicate the compressor and 

electric heater of heat pumps, respectively. The OFF state is denoted as 0 in the figures. 

When the zone temperature was decreased more than 2°F below the set point, both the heaters and 

compressor would be turned ON at the same time. To prevent this, the offset value of each heat pump was 

determined to be less than 2°F in accordance with building operator’s opinion. For example, the set point 

offset was set to 1°F for heat pump 8 and 2°F for HP-4—lower than the normal set point. When the ILC 

event ended, the set points returned to their original values.  
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The zone temperature of HP-8 decreased less than 1°F compared to the temperature before the 

compressor and electric heater were turn OFF during all ILC events. During the first ILC event, HP-8 

continued its heating operation when the zone temperature was less than the set point. The compressors 

were subsequently turned OFF after all electric heaters were turned OFF. After the second and third ILC 

events, only the compressor turned ON because the zone temperature decrease was less than 1°F below 

the set point. When all ILC events ended, the compressors of heat pumps were operating more of the time 

to meet the heating load.     

During the ILC event, the set point of HP-4 was lowered by 2°F from the original set point. ILC did not 

result in a significant zone temperature decrease when the HP-4 was curtailed to manage the peak demand 

level. For example, the maximum deviation in zone temperatures from the normal set point after the first 

ILC event was between 2°F and 3°F. Overall, ILC successfully dropped demand in some spaces to meet 

the established limit, and occupants did not indicate any comfort impacts.  

 
(a) HP-8 

 
(b) HP-4 

Figure 13.  Example of temperature and heat pump status signal profiles during ILC (March15) 

Table 16 shows the summary of curtailment of each heat pump during ILC on March 15. In the table, the 

symbol “O” indicates that ILC lowered the set point of the heat pumps selected for curtailment, which 
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results in those units turning OFF. The ILC uses HP-8 as much as possible and minimizes the use of the 

other heat pumps to reduce the demand, because the electric heater power of HP-8 is far greater than the 

other heat pumps.  

Table 16.  Summary of curtailment of each heat pump during ILC (March 15) 

System 

Model Room Type 

Capacity 

[tons] 

Electric Heater 

kW 

1st 

ILC 

2nd 

ILC 

3rd  

ILC 

Number of 

Curtailments 

HP-1A Manager Office 2 7.5 
 

O 
 

1 

HP-1B Office 2 7.5 O 
  

1 

HP-2 Manager Office 2 7.5 
   

0 

HP-3 Kitchen 7.5 14    0 

HP-4 Shop 7.5 14 O O  2 

HP-5 Shop 4 13 O   1 

HP-6 Shop 25 72    0 

HP-7 Office 7.5 14 O   1 

HP-8 Shop 20 54 O O O 3 

HP-350 Office 3 7.5    0 

Total Heat Pump Curtailments 5 3 1 9 

7.1.2 Field Test Results for ILC during the Cooling Season (July) 

Figure 14 shows the test results obtained in July under (a) no ILC and (b) with ILC. As the outdoor 

temperature started to rise in July, the maximum outdoor temperature was measured at about 90°F. As 

mentioned, the building controls were alternated daily to validate the ILC algorithm. For example, ILC 

was run on July 11 but not on July 12. Figure 14a shows the maximum peak demand as 148 kW between 

2 and 4 p.m. when the outdoor temperature reached maximum. Figure 14b shows the demand profile 

under ILC. The target was set at 125 kW as determined using the WBE method. There were five peak 

demand events between noon and 4 p.m. As shown, each time the building peak was closed to the target, 

ILC curtailed some RTUs to manage the peak under the demand level of 125 kW. The duration of each 

ILC event varied because secondary peak demands occurred during some events. In these cases, other 

heat pumps were turned ON because the zone temperatures were higher than the set points.   



 

32 

 

 

 

 
(a) Under no ILC (July12) 

 
(b) Under ILC (July11) 

Figure 14.  Electric demand and outdoor temperature profiles during cooling season 

Figure 15 shows the temperature and stage profiles under ILC. Both heat pumps have two separate 

compressor circuits. Output stages of heat pump systems shown on the second y-axis indicate the first and 

second compressors of heat pumps, respectively. The OFF state is denoted by 0 in the figures. As 

recommended by the building operator, the offset value of each heat pump was determined to be higher 

than 3°F. For example, the set point offset was set to 2°F for HP-6 and 3°F for HP-4 lower than the 

normal set point. When the ILC event ended, the set points returned to their original values.  

As shown in Figure 15a, the zone temperature of HP-6 increased less than 1°F compared to the one before 

compressors were turned OFF during all ILC events. The first compressor was subsequently turned OFF 

after the second compressor was turned OFF. Under ILC, no compressor was turned ON, which means 

zone temperatures did not increase significantly.  
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As shown in Figure 15b, ILC resulted in a zone temperature increase when HP-4 was curtailed to manage 

the peak demand level. For example, during the first ILC event, the maximum deviation of zone 

temperatures from the normal set point was 3.5°F. In this case, HP-4 started running in cooling operation 

mode because the zone temperature was higher than the offset set point. This prevented any possible 

occupant discomfort during ILC. When this happens, another heat pump is triggered to be OFF to avoid 

exceeding the target peak demand. Overall, ILC successfully dropped demand in the applicable spaces to 

meet the established limit while sustaining occupant comfort levels.  

 
(a) HP-6 

 
(b) HP-4 

Figure 15.  Example of temperature and heat pump stage profiles the at the test building during ILC 

Table 17 shows the summary of curtailment of each heat pump during ILC on July 11. The symbol O 

indicates that ILC curtailed the unit to an OFF state. There were five ILC events while HP-3, HP-4, HP-6, 

and HP-7 were switched in turn. The heat pumps serving the kitchen and shops were mainly selected. 

Because all shops were open spaces, the heat pumps were running at all times (e.g., HP-5 and HP-8), 

which prevented the zone temperature from increasing significantly.  
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Table 17.  Summary of curtailment of each heat pump for the cooling case study 

System 

Model Room Type 

Capacity 

[tons] 

1st 

 ILC 

2nd 

ILC 

3rd 

ILC 

4th 

ILC 

5th 

 ILC 

Number of 

Curtailments 

HP1-A Manager Office 2 
     

0 

HP1-B Office 2 
     

0 

HP-2 Manager Office 2 
     

0 

HP-3 Kitchen 7.5 O 
   

O 2 

HP-4 Shop 7.5 
 

O O 
 

O 3 

HP-5 Shop 4 
     

0 

HP-6 Shop 25 O O O O 
 

4 

HP-7 Office 7.5 
  

O O O 3 

HP-8 Shop 20 
     

0 

HP-350 Office 3 
      

Total Heat Pump Curtailments 2 2 3 2 3 12 

7.1.3 Demonstration Results for ILC during the Cooling Season (August)  

To demonstrate the capabilities of ILC algorithm under similar outdoor temperatures, 2 days with 

temperatures over 100°F were selected: August 5 and August 16, as shown in Figure 16. Figure 16a 

shows the maximum peak demand as 175 kW at 2 p.m. when the outdoor temperature was 96°F. Figure 

16b shows the demand profile under ILC. Although target peak demand under such high outdoor 

temperatures should have been increased based on the WBE method, the demonstration used the 

aggressive target peak demand of 140 kW for consistency. As shown in Figure 16b, ILC was run for 

extended hours from 11 a.m. to 4 p.m. with nine ILC events. Overall, the ILC algorithm can maintain 

demand at the target peak level. 
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(a) Under no ILC (August5) 

 
(b) Under ILC (August16) 

Figure 16.  Electric demand and outdoor temperature profiles during cooling season at the test building 

Figure 17 shows example temperature and heat pump status signal profiles under ILC on August 16. To 

accommodate the aggressive target peak demand, the offset set point was changed from 3°F to 4°F. 

During the ILC test, according to the building operators they did not receive any complaints from 

occupants. The set point of HP-6 increased by 1°F from the original set point during each ILC event. 

Although the zone temperature was increased by 4°F due to the aggressive target demand level after all 

ILC events ended, the increase was not significant enough to cause occupant discomfort. As shown in 

Figure17b, the difference between the original set point and zone temperature of HP-4 was less than 3°F, 

thus sustaining the comfort level. Only one of three attempts to turn OFF the second stage compressor 

was successful because the deviation between offset set point and zone temperature was significant 

enough to keep the compressor ON.  
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(a) HP-6 

 
(b) HP-4 

Figure 17.  Temperature and heat pump status signal profiles at the test building during ILC 

Table 18 shows the summary of curtailment of each heat pump during ILC on August 16. Because of the 

aggressive target peak demand, there were nine ILC events, which are significantly more frequent than 

other test cases. While HP-3, HP-4, HP-6, and HP-7 were mainly switched OFF, HP-2 and HP-8 were 

also turned ON and OFF to reduce the peak demand. For the seventh ILC event in particular, 85% of the 

total capacity of heating, ventilation, and air-conditioning was curtailed. When the zone temperature was 

higher than the offset set point, the corresponding heat pumps were turned ON and thus the comfort level 

was not jeopardized.  
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Table 18.  Summary of curtailment of each heat pump for the cooling case study 

System 

Model 

Room 

Type 

Capacity 

[tons] 

1st 

ILC 

2nd 

ILC 

3rd 

ILC 

4th 

ILC 

5th 

ILC 

6th 

ILC 

7th  

ILC 

8th 

ILC 

9th 

ILC 

Number of 

Curtailments 

HP1-A 
Manager 

Office 
2          0 

HP1-B Office 2          0 

HP-2 
Manager 

Office 
2    O   O   2 

HP-3 Kitchen 7.5 O   O O O O O O 7 

HP-4 Shop 7.5 O   O O O O O O 7 

HP-5 Shop 4          0 

HP-6 Shop 25 O  O O O O O O O 8 

HP-7 Office 7.5  O  O O O O O O 7 

HP-8 Shop 20       O   1 

HP-350 Office 
 

         0 

Total Heat Pump Curtailments 3 1 1 5 4 4 6 4 4 32 
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8.0 Conclusions 

The overall goal of this work was to develop, validate and demonstrate that ILC algorithm can be 

deployed to manage building peak consumption. The ILC process uses the AHP to dynamically prioritize 

the available controllable loads for curtailment in a building or a group of buildings. The ILC process can 

be implemented on low-cost hardware (e.g., Beagle Bone, Raspberry PI, Intel NUC, etc.) on a supervisory 

controller without the need for additional sensing. First, the ILC process was tested in a simulation 

environment to control a group of RTUs to manage a building’s peak demand. The test showed that the 

peak load can be reduced while still maintaining the zone temperatures to within acceptable deviations. 

We describe the process as parameter-light because only a few input variables need to be set by the user. 

The key parameters include the curtailment time period and target peak demand level. Based on the 

virtual test bed results, we discussed the influence of the parameters choices and provided guidance to 

setting initial parameter for the ILC.  

The ILC agent using VOLTTRON was implemented and demonstrated to manage the electric demand in 

the test building on the PNNL campus. The ILC using target levels estimated by WBE was tested under 

different outdoor operating conditions. Based on the test results, the ILC was successful in coordinating 

how many RTUs run concurrently, thereby maintaining the building peak demand to the target level 

without a significant reduction in occupant comfort.  

By anticipating future demand, the process can be extended to add advanced control features such as 

precooling and preheating to alleviate comfort issues when the RTUs are curtailed to manage the peak 

demand. Although the ILC process described and validated in this report was highly tailored to work with 

RTUs, it can be generalized and applied to any controllable loads in a building, such as those of variable 

air volume boxes and lighting. Furthermore, the ILC process can be extended to manage building loads 

based on an energy budget instead of peak consumption.  
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